【題目】已知拋物線的準線為,上一動點,過點作拋物線的切線,切點分別為.

(I)求證:是直角三角形;

(II)軸上是否存在一定點,使三點共線.

【答案】(I)證明見解析;(II)存在.

【解析】

(I)設(shè)出點M的坐標以及切線方程,并將其與聯(lián)立消,利用,得到,結(jié)合韋達定理得到,即可證明是直角三角形;

(II)設(shè),由(I)可得,設(shè)出直線AB的方程與聯(lián)立消,結(jié)合韋達定理得到,解得,得到直線過定點,即可證明軸上存在一定點,使三點共線.

(I)由已知得直線的方程為,設(shè),切線斜率為,則切線方程為,將其與聯(lián)立消.所以,化簡得,所以,所以.即是直角三角形.

(II)由I知時,方程的根為

設(shè)切點,則.因為,所以.

設(shè),與聯(lián)立消,則,所以,解得,所以直線過定點.

軸上存在一定點,使三點共線.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓上,橢圓的右焦點,直線過橢圓的右頂點,與橢圓交于另一點,與軸交于點.

1)求橢圓的方程;

2)若為弦的中點,是否存在定點,使得恒成立?若存在,求出點的坐標,若不存在,請說明理由;

3)若,交橢圓于點,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖所示,在正三棱柱中,底面邊長為,側(cè)棱長為,是棱的中點.

)求證:平面

)求二面角的大;

)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).若方程有且只有兩個不同的實根,則實數(shù)的取值范圍為 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,平面,,,點在線段上,且,.

1)試用空間向量證明直線與平面不平行;

2)設(shè)平面與平面所成的銳二面角為,若,求的長;

3)在(2)的條件下,設(shè)平面平面,求直線與平面的所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有編號為10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):

編號

直徑

1.51

1.49

1.49

1.51

1.49

1.51

1.47

1.46

1.53

1.47

其中直徑在區(qū)間內(nèi)的零件為一等品.

1)上述10個零件中,隨機抽取1個,求這個零件為一等品的概率.

2)從一等品零件中,隨機抽取2個;

①用零件的編號列出所有可能的抽取結(jié)果;

②求這2個零件直徑相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著教育信息化2.0時代的到來,依托網(wǎng)絡(luò)進行線上培訓越來越便捷,逐步成為實現(xiàn)全民終身學習的重要支撐.最近某高校繼續(xù)教育學院采用線上和線下相結(jié)合的方式開展了一次300名學員參加的“國學經(jīng)典誦讀”專題培訓.為了解參訓學員對于線上培訓、線下培訓的滿意程度,學院隨機選取了50名學員,將他們分成兩組,每組25人,分別對線上、線下兩種培訓進行滿意度測評,根據(jù)學員的評分(滿分100)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷學員對于線上、線下哪種培訓的滿意度更高?并說明理由;

(2)50名學員滿意度評分的中位數(shù),并將評分不超過、超過分別視為基本滿意”、“非常滿意”兩個等級.

(i)利用樣本估計總體的思想,估算本次培訓共有多少學員對線上培訓非常滿意?

(ii)根據(jù)莖葉圖填寫下面的列聯(lián)表:

并根據(jù)列聯(lián)表判斷能否有99.5%的把握認為學員對兩種培訓方式的滿意度有差異?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)①若直線的圖象相切, 求實數(shù)的值;

②令函數(shù),求函數(shù)在區(qū)間上的最大值.

(2)已知不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,過其焦點的直線與拋物線相交于、兩點,滿足.

1)求拋物線的方程;

2)已知點的坐標為,記直線、的斜率分別為,,求的最小值.

查看答案和解析>>

同步練習冊答案