求橢圓
x24
+y2=1的長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).
分析:利用橢圓
x2
4
+y2=1,可得a2=4,b2=1.即可得到a,b,c=
a2-b2
.進(jìn)而得到長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).
解答:解:∵橢圓
x2
4
+y2=1,∴a2=4,b2=1.
∴a=2,b=1.c=
a2-b2
=
3

∴橢圓的長(zhǎng)軸和短軸的長(zhǎng)分別為2a=4,2b=2.
離心率e=
c
a
=
3
2

焦點(diǎn)
3
,0)
,
頂點(diǎn)(±2,0),(0,±1).
點(diǎn)評(píng):熟練掌握橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點(diǎn).
(1)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求向量乘積
PF1
PF2
的取值范圍;
(2)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N,且∠MON為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個(gè)頂點(diǎn),直線y=kx(k>0)與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓
x2
4
+y2=1
的左、右焦點(diǎn).
(1)求橢圓
x2
4
+y2=1
的焦點(diǎn)坐標(biāo)、離心率及準(zhǔn)線方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求橢圓
x2
4
+y2=1的長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1、F2分別是橢圓
x2
4
+y2=1
的左、右焦點(diǎn).
(1)求橢圓
x2
4
+y2=1
的焦點(diǎn)坐標(biāo)、離心率及準(zhǔn)線方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)設(shè)過定點(diǎn)M(0,2)的直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案