精英家教網(wǎng)某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件),可近似看做一次函數(shù)y=kx+b的關(guān)系(圖象如圖所示).
(1)根據(jù)圖象,求一次函數(shù)y=kx+b的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元,
    ①求S關(guān)于x的函數(shù)表達(dá)式;
    ②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷售單價(jià).
分析:(1)首先根據(jù)一次函數(shù)y=kx+b的表達(dá)式代入數(shù)值化簡(jiǎn),然后求出k,b并求出一次函數(shù)表達(dá)式.
(2)①通過(guò)(1)直接寫出s的表達(dá)式并化簡(jiǎn)
     ②根據(jù)二次函數(shù)判斷最值.
解答:解:(1)由圖象可知,
400=k×600+b
300=k×700+b
,
解得,
k=-1
b=1000
,
所以y=-x+1000(500≤x≤800).
(2)①由(1)
S=x×y-500y
=(-x+1000)(x-500)
=-x2+1500x-500000,(500≤x≤800).
②由①可知,S=-(x-750)2+62500,
其圖象開口向下,對(duì)稱軸為x=750,
所以當(dāng)x=750時(shí),Smax=62500.
即該公司可獲得的最大毛利潤(rùn)為62500元,
此時(shí)相應(yīng)的銷售單價(jià)為750元/件.
點(diǎn)評(píng):本題考查函數(shù)模型的應(yīng)用,以及一元二次函數(shù),二次函數(shù)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省濟(jì)寧市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷售單價(jià).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建省高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示)

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷售單價(jià).

(提示:毛利潤(rùn)=銷售總價(jià)-成本總價(jià))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖南瀏陽(yáng)一中高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷售單價(jià).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年山西省臨汾市高一年級(jí)學(xué)段考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分10分)

某公司試銷一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;

(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元,

①求S關(guān)于的函數(shù)表達(dá)式;

②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷售單價(jià).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案