袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止時(shí)所需要的取球次數(shù).
(Ⅰ)求袋中原有白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量ξ的概率分布及數(shù)學(xué)期望Eξ;
(Ⅲ)求甲取到白球的概率.
【答案】分析:(I)設(shè)出袋中原有n個(gè)白球,寫出試驗(yàn)發(fā)生包含的事件數(shù)和滿足條件的事件數(shù),根據(jù)等可能事件的概率公式得到關(guān)于n的方程,解方程即可;
(II)確定ξ的可能取值,求出相應(yīng)的概率,即可求出隨機(jī)變量ξ的概率分布及數(shù)學(xué)期望Eξ;
(Ⅲ)甲先取,故甲只有可能在第1次和第3次取球,從而可求甲取到白球的概率.
解答:解:(I)設(shè)袋中原有n個(gè)白球,由題意知:=,∴n(n-1)=12
解得n=4(舍去n=-3),即袋中原有4白球;
(II)ξ的可能取值為1,2,3,4
P(ξ=1)=,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==
∴隨機(jī)變量ξ的概率分布列為
 ξ 1 2 3 4
 P    
∴Eξ==;
(III)∵甲先取,∴甲只有可能在第1次和第3次取球,
記“甲取到白球”為事件A,P(AA)=P(ξ=1)+P(ξ=3)=
點(diǎn)評(píng):本題考查概率的求解,考查隨機(jī)變量的分布列與期望,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
17
.現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)即終止.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,
(I)求袋中原有白球的個(gè)數(shù)和;
(II)求取球兩次停止的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取1個(gè)球是白球的概率為
37
.現(xiàn)有甲、乙兩人從袋中輪流摸取1球,取后不放回:甲先取,乙后取,然后甲再取…,直到兩人中有一人取到白球時(shí)即終止.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.
(1)求取球2次終止的概率;
(2)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
17
.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的.
(1)求袋中原有白球的個(gè)數(shù);
(2)求取球兩次終止的概率
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
17
,現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到兩人中有一人取到白球時(shí)即終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止所需要的取球次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•鹽城一模)袋中裝有黑球和白球共7個(gè),從中任取2個(gè)球都是白球的概率為
27
.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到兩人中有一人取到白球時(shí)即終止.每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止時(shí)所需要的取球次數(shù).
(Ⅰ)求袋中原有白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量ξ的概率分布及數(shù)學(xué)期望Eξ;
(Ⅲ)求甲取到白球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案