已知拋物線方程為,直線的方程為,在拋物線上有一動點(diǎn)P到y(tǒng)軸的距離為,P到直線的距離為,則的最小(  )

A.     B.      C.     D.

 

【答案】

D

【解析】

試題分析:如圖

點(diǎn)P到準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,從而P到y(tǒng)軸的距離等于點(diǎn)P到焦點(diǎn)F的距離減1.過焦點(diǎn)F作直線x-y+4=0的垂線,此時d1+d2=|PF|+d2-1最小,∵F(1,0),則利用點(diǎn)到直線的距離可知,|PF|+d2=,則d1+d2的最小值為-1,故選D.

考點(diǎn):本試題主要考查了拋物線的簡單性質(zhì),兩點(diǎn)距離公式的應(yīng)用.解此列題設(shè)和先畫出圖象,進(jìn)而利用數(shù)形結(jié)合的思想解決問題.

點(diǎn)評:解決該試題的關(guān)鍵是點(diǎn)P到y(tǒng)軸的距離等于點(diǎn)P到焦點(diǎn)F的距離減1,過焦點(diǎn)F作直線x-y+4=0的垂線,此時d1+d2最小,根據(jù)拋物線方程求得F,進(jìn)而利用點(diǎn)到直線的距離公式求得d1+d2的最小值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為
1
4
,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等
10
時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年浙江省教育考試院高考測試樣卷(理) 題型:解答題

   已知拋物線C的頂點(diǎn)在原點(diǎn), 焦點(diǎn)為F(0, 1).

(Ⅰ) 求拋物線C的方程;

(Ⅱ) 在拋物線C上是否存在點(diǎn)P, 使得過點(diǎn)P的直

線交C于另一點(diǎn)Q, 滿足PF⊥QF, 且PQ與C

在點(diǎn)P處的切線垂直? 若存在, 求出點(diǎn)P的坐標(biāo);

若不存在, 請說明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為數(shù)學(xué)公式,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等數(shù)學(xué)公式時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)K(-1,0)的直l與C相交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對稱點(diǎn)為D。 (1)證明:點(diǎn)F在直線BD上;
(2)設(shè)=,求△BDK的內(nèi)切圓M的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臺州市天臺縣平橋中學(xué)高二(上)12月診斷數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等時,求k的值.

查看答案和解析>>

同步練習(xí)冊答案