年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:022
(2006
北京海淀模擬)把實(shí)數(shù)a,b,c,d排成形如的形式,稱之為二行二列矩陣.定義矩陣的一種運(yùn)算,該運(yùn)算的幾何意義為平面上的點(diǎn)(x,y)在矩陣的作用下變換成點(diǎn)(ax+by,cx+dy),則點(diǎn)(2,3)在矩陣的作用下變換成點(diǎn)(__ , ).又若曲線在矩陣的作用下變換成曲線,則a+b的值為________.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請考生任選2題作答,滿分14分.
1.(本小題滿分7分) 選修4一2:矩陣與變換
如果曲線在矩陣的作用下變換得到曲線, 求的值。
2.(本小題滿分7分) 選修4一4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,直線的參數(shù)方程是(為參數(shù)).
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;O
(2)設(shè)直線與軸的交點(diǎn)是,是曲線上一動(dòng)點(diǎn),求的最大值.
3.(本小題滿分7分)選修4-5:不等式選講
設(shè)函數(shù)
(1)解不等式; (2)若的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
本題有(1)、(2)、(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)(本小題滿分7分)選修4—2:矩陣與變換
已知二階矩陣有特征值及對應(yīng)的一個(gè)特征向量.
(Ⅰ)求矩陣;
(Ⅱ)設(shè)曲線在矩陣的作用下得到的方程為,求曲線的方程.
(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),若圓在以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸的極坐標(biāo)系下的方程為.
(Ⅰ)求曲線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),求的最小值.
(3)(本小題滿分7分)選修4—5:不等式選講
已知函數(shù),不等式在上恒成立.
(Ⅰ)求的取值范圍;
(Ⅱ)記的最大值為,若正實(shí)數(shù)滿足,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com