(1)證明數(shù)列{lg(1+an)}是等比數(shù)列;
(2)設(shè)Tn=(1+a1)(1+a2)…(1+an),求Tn及數(shù)列{an}的通項;
(3)記bn=+,求數(shù)列{bn}的前n項和Sn,并證明Sn+=1.
解:(1)證明:由已知得an+1=an2+2an,∴an+1+1=(an+1)2-1an+1+1=(an+1)2.
又∵a1=2,∴an+1>0,兩邊取對數(shù)得lg(an+1+1)=2lg(an+1)(n∈N+),即=2.
∴數(shù)列{lg(1+an)}是公比為2的等比數(shù)列.
(2)由(1)知lg(1+an)=2n-1·lg(1+a1)=2n-1·lg3=lg32n-1,∴1+an=32n-1.(*)
∴Tn=(1+a1)(1+a2)…(1+an)=··…=+…+2n-1=3(2n-1).
由(*)式得an=-1.
(3)∵an+1=an2+2an,∴an+1=an(an+2).∴==().
∴=.
又bn=+,∴bn=2().
∴Sn=b1+b2+…+bn=2(++…+)=2().
又∵an=-1,a1=2,an+1=-1,∴Sn=1.
又由(2)知Tn=,∴Sn+=1+=1.
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
Sn-1 |
Sn |
n2 |
n+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
5 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | Sn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
2an |
an+1 |
1 |
an |
n |
bn |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com