精英家教網 > 高中數學 > 題目詳情
已知m、n、s、t為正數,m+n=2,=9其中m、n是常數,且s+t最小值是,滿足條件的點(m,n)是橢圓=1一弦的中點,則此弦所在的直線方程為( )
A.x-2y+1=0
B.2x-y-1=0
C.2x+y-3=0
D.x+2y-3=0
【答案】分析:由題設知()(s+t)=n+m+=,滿足時取最小值,由此得到m=n=1.設以(1,1)為中點的弦交橢圓=1于A(x1,y1),B(x2,y2),由中點從坐標公式知x1+x2=2,y1+y2=2,把A(x1,y1),B(x2,y2)分別代入x2+2y2=4,得,①-②,得2(x1-x2)+4(y1-y2)=0,k=,由此能求出此弦所在的直線方程.
解答:解:∵sm、n、s、t為正數,m+n=2,=9,
s+t最小值是
∴()(s+t)的最小值為4
∴()(s+t)=n+m+=,
滿足時取最小值,
此時最小值為=2+2=4,
得:mn=1,又:m+n=2,所以,m=n=1.
設以(1,1)為中點的弦交橢圓=1于A(x1,y1),B(x2,y2),
由中點從坐標公式知x1+x2=2,y1+y2=2,
把A(x1,y1),B(x2,y2)分別代入x2+2y2=4,得
,
①-②,得2(x1-x2)+4(y1-y2)=0,
∴k=,
∴此弦所在的直線方程為
即x+2y-3=0.
故選D.
點評:本題考查橢圓的性質和應用,解題時要認真審題,注意均值不等式和點差法的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知m,n,s,t∈R+,m+n=2,
m
s
+
n
t
=9
,其中m、n是常數,當s+t取最小
4
9
時,m、n對應的點(m,n)是雙曲線
x2
4
-
y2
2
=1
一條弦的中點,則此弦所在的直線方程為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m,n,s,t∈R+,m+n=2,
m
s
+
n
t
=9
,其中m、n是常數,當s+t取最小值
4
9
時,m、n對應的點(m,n)是雙曲線
x2
4
-
y2
2
=1
一條弦的中點,則此弦所在的直線方程為
x-2y+1=0
x-2y+1=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m、n、s、t為正數,m+n=2,
m
s
+
n
t
=9其中m、n是常數,且s+t最小值是
4
9
,滿足條件的點(m,n)是橢圓
x2
4
+
y2
2
=1一弦的中點,則此弦所在的直線方程為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m、n、s、t∈R+,m+n=2,
m
s
+
n
t
=9
其中m、n是常數,且s+t的最小值是
4
9
,滿足條件的點(m、n)是圓(x-2)2+(y-2)2=4中一弦的中點,則此弦所在的直線方程為
x+y-2=0
x+y-2=0

查看答案和解析>>

同步練習冊答案