(本小題滿分14分)
如圖,已知幾何體的三視圖(單位:cm).
(1)在這個(gè)幾何體的直觀圖相應(yīng)的位置標(biāo)出字母;(2分)
(2)求這個(gè)幾何體的表面積及體積;(6分)
(3)設(shè)異面直線、所成角為,求.(6分)

解(1)

(2)幾何體的全面積;;
(3異面直線所成角的余弦值為.

解析試題分析:(1)根據(jù)三視圖的畫出,進(jìn)行復(fù)原畫出幾何體的圖形即可.
(2)幾何體可看成是正方體AC1及直三棱柱B1C1Q-A1D1P的組合體,求出底面面積,然后求出體積即可.
(3)通過建立空間直角坐標(biāo)系求解也可以,也能通過平移法得到異面直線的所成的角的大小,進(jìn)而解得。
解(1)幾何體的直觀圖相應(yīng)的位置標(biāo)出字母如圖所示.…………2分 

(2)這個(gè)幾何體可看成是由正方體及直三棱柱的組合體.
,,可得
故所求幾何體的全面積
…5分
所求幾何體的體積……8分
(3)由,且,可知,
為異面直線所成的角(或其補(bǔ)角).……10分
由題設(shè)知,,
中點(diǎn),則,且,.……12分
由余弦定理,得.……13分
所以異面直線、所成角的余弦值為.………………14分
考點(diǎn):本試題主要考查了三視圖復(fù)原幾何體,畫出中逐步按照三視圖的作法復(fù)原,考查空間想象能力,邏輯推理能力,計(jì)算能力,轉(zhuǎn)化思想,是中檔題.
點(diǎn)評(píng):解決該試題的關(guān)鍵是能準(zhǔn)確的由三視圖得到原幾何體,并能結(jié)合棱柱的體積和表面積公式準(zhǔn)確運(yùn)算,考查了一定的計(jì)算能力。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,的中點(diǎn), 是線段上的點(diǎn).

(I)當(dāng)的中點(diǎn)時(shí),求證:平面
(II)要使二面角的大小為,試確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)右圖是一個(gè)直三棱柱(以為底面)被一平面所截得到的幾何體,截面為 已知,,

(Ⅰ)設(shè)點(diǎn)的中點(diǎn),證明:平面
(Ⅱ)求二面角的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,的中點(diǎn),作于點(diǎn)
(1) 證明//平面;
(2) 證明⊥平面
(3) 求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(20) (本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長(zhǎng)為2 的正方形,高為.M為線段PC的中點(diǎn).

(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) N為AP的中點(diǎn),求CN與平面MBD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,已知平面,是垂足.

(Ⅰ)求證:平面;             
(Ⅱ)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)如圖所示,在四棱錐中,平面,
,平分的中點(diǎn).

求證:(1)平面;
(2)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在長(zhǎng)方體中,,,是棱上一點(diǎn),

(1)若為CC1的中點(diǎn),求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直棱柱中,底面是直角梯形,,

(1)求證:平面;
(2)在A1B1上是否存一點(diǎn),使得與平面平行?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案