如右下圖,在長方體ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2。 E、F分別是線段AB、BC上的點(diǎn),且EB= FB=1.

(1) 求二面角C—DE—C1的余弦值;

(2) 求直線EC1與FD1所成的余弦值.

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(I)(法一)矩形ABCD中過C作CHDE于H,連結(jié)C1H

CC1面ABCD,CH為C1H在面ABCD上的射影

C1HDE   C1HC為二面角C—DE—C1的平面角

矩形ABCD中得EDC=,DCH中得CH=,

又CC1=2,

C1HC中,,

C1HC

二面角C—DE—C1的余弦值為             7分

(2)以D為原點(diǎn),分別為x軸,y軸,z軸的正向建立空間直角坐標(biāo)系,則有A(3,0,0)、D1(0,0,2)、B(3,4,0),E(3,3,0)、F(2,4,0)、C1(0,4,2)

設(shè)EC1與FD1所成角為β,則

   

故EC1與FD1所成角的余弦值為      

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如右下圖,定圓的半徑為a,圓心為(b,c),則直線ax+by+c=0與直線 x-y+1=0的交點(diǎn)在第
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年廣東卷)(12分)

如右下圖,在長方體中,已知,分別是線段上的點(diǎn),且

(I)求二面角的正切值

(II)求直線所成角的余弦值

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省汕頭市高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如右下圖,在長方體ABCD—A1B1C1D1中,已知AB= 4, AD =3, AA1= 2。 E、F分別是線段AB、BC上的點(diǎn),且EB= FB=1.

(1) 求二面角C—DE—C1的余弦值;

(2) 求直線EC1與FD1所成的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如右下圖:正三棱柱ABC—A1B1C1的體積為V,點(diǎn)P、Q分別在側(cè)棱AA1CC1上,AP=C1Q,則四棱錐B—APQC的體積為(    )

A.       B.        C.        D.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案