已知圓的方程為:

(1)試求的值,使圓的面積最;

(2)求與滿足(1)中條件的圓相切,且過點(diǎn)的直線方程.

(1)1(2)


解析:

配方得圓的方程:

(1)當(dāng)時(shí),圓的半徑有最小值1,此時(shí)圓的面積最小。

(2)當(dāng)時(shí),圓的方程為

設(shè)所求的直線方程為

由直線與圓相切,得,

所以切線方程為,即

又過點(diǎn)且與軸垂直的直線與圓也相切

所發(fā)所求的切線方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為(x-1)2+(y+2)2=4,則圓的圓心C、半徑R分別為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為x2+y2=4,過點(diǎn)M(2,4)作圓的兩條切線,切點(diǎn)分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x軸的一條弦,AB所在直線的方程為x=m(|m|<a且m≠0),P是橢圓上異于A、B的任意一點(diǎn),直線AP、BP分別交定直線l:x=
a2
m
于兩點(diǎn)Q、R,求證
OQ
OR
>4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為(x-2)2+(y+1)2=4,則圓心坐標(biāo)為
(2,-1)
(2,-1)
,半徑為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)已知圓的方程為x2+y2-6x-8y=0,設(shè)圓中過點(diǎn)(2,5)的最長弦與最短弦為分別為AB、CD,則直線AB與CD的斜率之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)已知圓的方程為(x-1)2+(y-2)2=4,那么該圓圓心到直線
x=t+3
y=t+1
(t為參數(shù))的距離為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案