【題目】在2017年“KFC”乒乓球賽進校園活動中,某校甲、乙兩隊進行決賽,比賽規(guī)則規(guī)定:兩隊之間進行3局比賽,3局比賽必須全部打完,只要贏2局的隊為獲勝隊,假如甲、乙兩隊之間每局比賽輸贏的機會相同,且乙隊已經(jīng)贏得了第1局比賽.
(1)列表或畫樹狀圖表示乙隊所有比賽結果的可能性;
(2)求乙隊獲勝的概率.

【答案】
(1)解:畫樹狀圖為:

共有4種等可能的結果數(shù)


(2)解:乙隊贏滿兩局的結果數(shù)為3,

乙所以隊獲勝的概率=


【解析】(1)根據(jù)題意列出樹狀圖知共有4種等可能的結果數(shù);
(2)由(1)知共有4種等可能的結果數(shù);乙隊贏滿兩局的結果數(shù)為3,根據(jù)概率公式計算即可。
【考點精析】掌握列表法與樹狀圖法是解答本題的根本,需要知道當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在某市第四次黨代會上,提出了建設美麗城市決勝全面小康的奮斗目標,為策應市委號召,學校決定改造校園內(nèi)的一小廣場,如圖是該廣場的平面示意圖,它是由6個正方形拼成的長方形,已知中間最小的正方形A的邊長是1米.

若設圖中最大正方形B的邊長是x米,請用含x的代數(shù)式分別表示出正方形F、EC的邊長;

觀察圖形的特點可知,長方形相對的兩邊是相等的如圖中的MN請根據(jù)這個等量關系,求出x的值;

現(xiàn)沿著長方形廣場的四條邊鋪設下水管道,由甲、乙2個工程隊單獨鋪設分別需要10天、15天完成兩隊合作施工2天后,因甲隊另有任務,余下的工程由乙隊單獨施工,試問還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=﹣ x+6的圖象與坐標軸交于A、B點(如圖),AE平分∠BAO,交x軸于點E.

(1)求點B的坐標;
(2)求直線AE的表達式;
(3)過點B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是用大小相同的小正方形拼成的圖形,拼第1個圖需要3個小正方形,拼第2個圖需要8個小正方形,拼第3個圖需要15個小正方形,

根據(jù)拼圖規(guī)律回答:第4個圖形需要多少個小正方形;第n個圖形比第個圖多需要多少個小正方形;第n個圖形共需要多少個小正方形;

若第n個圖形比第個多2019個小正方形,求n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x>0,現(xiàn)規(guī)定符號[x]表示大于或等于x的最小整數(shù),如[0.5]=1,[4.3]=5,[6]=6……

(1)填空:[]=_____,[8.05]=______;若[x]=5,則x的取值范圍是________.

(2)某市的出租車收費標準如下:3 km以內(nèi)(包括3km)收費5元,超過3 km的,每超過1km,加收1.2元(不足1 km按1 km計算).設所行駛的路程為x(km),用含[x]的式子表示出當x>3時的乘車費用.

(3) 在(2)的條件下,某乘客乘出租車后付費18.2元,求該乘客所乘路程的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,∠C=30°,ABAD

(1)求∠BDA的度數(shù);

(2)若AD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20088月第29屆奧運會將在北京開幕,5個城市的國際標準時間(單位:時)在數(shù)軸上表示如圖所示,那么北京時間20088820時應是( 。

A.倫敦時間20088811

B.巴黎時間20088813

C.紐約時間2008885

D.漢城時間20088819

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,OA=1,則 的長為

查看答案和解析>>

同步練習冊答案