如圖,正方形ABCD的中心為O,AB=8,點E,F(xiàn)分別是線段AD,CD上的動點(與AD,CD的交點不重合),且AE=a,CF=b.
(1)求正方形ABCD的周長;
(2)若四邊形EOFD的面積為10,求代數(shù)式(a-b)2+4(a-1)(b-1)的值.
(3)當(dāng)OE⊥OF時,求證:EF2=a2+b2
(1)由題意,得
正方形的周長為:4×8=32.
答:正方形ABCD的周長為:32;

(2)如圖1,過點O分別作OM⊥AD于M,ON⊥CD于點N,連接OD,
∴∠AMO=∠CNO=90°.
∵四邊形ABCD是正方形,
∴AD=CD=8,∠ADC=90°,
∴OMCD,ONAD.
∵O是AC的中點,
∴AO=CO,
∴AM=DM,CN=DN,
∴OM=ON=4.
∵AE=a,CF=b,
∴DE=8-a,DF=8-b,
∴S四邊形EOFD=
1
2
×4(8-a)
+
1
2
×4(8-b)
=10,
∴a+b=11
∵(a-b)2+4(a-1)(b-1)=(a+b)2-4(a+b)+4,(7分)
=112-44+4,
=81;

(3)如圖2,連接OD,EF,
∵AD=CD,∠ADC=90°,O是AC的中點,
∴OD⊥AC,OD=AC.∠ODC=45°.
∵∠EOF=90°
∴∠AOE=∠DOF.
∵四邊形ABCD是正方形,
∴∠OAE=45°.
∴∠OAE=∠ODF.
在△AOE和△DOF中,
∠OAE=∠ODF
OA=OD
∠OAE=∠ODF
,
∴△AOE≌△DOF(ASA),
∴AE=DF=a,
∵DE=8-a,
∴DE=8-DF.
∵CF=8-DF,
∴DE=CF,
∴DE=b,
在Rt△DEF中,由勾股定理,得EF2=a2+b2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

邊長為4的正方形ABCD中,點O是對角線AC的中點,P是對角線AC上一動點,過點P作PF⊥CD于點F,作PE⊥PB交直線CD于點E,設(shè)PA=x,S△PCE=y,
(1)求證:DF=EF;
(2)當(dāng)點P在線段AO上時,求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在點P的運動過程中,△PEC能否為等腰三角形?如果能夠,請直接寫出PA的長;如果不能,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長為8cm,點E、F分別在邊BC、CD上,∠EAF=45°.當(dāng)EF=8cm時,△AEF的面積是______cm2;當(dāng)EF=7cm時,△EFC的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖(1),在正方形ABCD中,對角線AC、BD相交于點O,易知AC⊥BD,
CO
AC
=
1
2
;
(2)如圖(2),若點E是正方形ABCD的邊CD的中點,即
DE
DC
=
1
2
,過D作DG⊥AE,分別交AC、BC于點F、G.求證:
CF
AC
=
1
3
;
(3)如圖(3),若點P是正方形ABCD的邊CD上的點,且
DP
DC
=
1
n
(n為正整數(shù)),過點D作DN⊥AP,分別交AC、BC于點M、N,請你先猜想CM與AC的比值是多少,然后再證明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為1cm,E、F分別是BC、CD的中點,連接BF、DE,則圖中陰影部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正方形ABCD的面積為1,AE=EB,DH=2AH,CG=3DG,BF=4FC,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,其中是中心對稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把下列圖形中符合要求的圖形的編號填入圈內(nèi).

查看答案和解析>>

同步練習(xí)冊答案