如圖.點(diǎn)A、B、C、D在⊙O上,AC⊥BD于點(diǎn)E,過點(diǎn)O作OF⊥BC于F,求證:

(1)△AEB∽△OFC;

(2)AD=2FO.

 

【答案】

證明:(1)如圖,連接OB,則∠BAE=∠BOC,

∵OF⊥BC,∴∠COF=∠BOC。

∴∠BAE=∠COF。

又∵AC⊥BD,OF⊥BC,∴∠OFC=∠AEB=90°。

∴△AEB∽△OFC。

(2)∵△AEB∽△OFC,∴,即

由圓周角定理,∠D=∠BCE,∠DAE=∠CBE,

∴△ADE∽△BCE。∴。

∵OF⊥BC,∴BC=2CF。

∴AD =2FO。

【解析】

試題分析:(1)連接OB,根據(jù)圓周角定理可得∠BAE=∠BOC,根據(jù)垂徑定理可得∠COF=∠BOC,再根據(jù)垂直的定義可得∠OFC=∠AEB=90°,然后根據(jù)兩角對(duì)應(yīng)相等,兩三角形相似證明即可;

(2)根據(jù)相似三角形對(duì)應(yīng)邊成比例可得,再根據(jù)圓周角定理求出∠D=∠BCE,∠DAE=∠CBE,然后求出△ADE和△BCE相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得,從而得到,再根據(jù)垂徑定理BC=2FC,代入整理即可得證!

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B在數(shù)軸上,它們所對(duì)應(yīng)的數(shù)分別是-4、
2x+23x-1
,且點(diǎn)A、B關(guān)于原點(diǎn)O對(duì)稱,求x的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A為⊙O直徑CB延長(zhǎng)線上一點(diǎn),過點(diǎn)A作⊙O的切線AD,切點(diǎn)為D,過點(diǎn)D作DE⊥AC,垂足為F,連接精英家教網(wǎng)BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,試求CE的長(zhǎng).
(3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A的坐標(biāo)為(2
2
,0
),點(diǎn)B在直線y=-x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( 。
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B在線段MN上,則圖中共有
 
條線段.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點(diǎn)O到直線l的距離為3,如果以點(diǎn)O為圓心的圓上只有兩點(diǎn)到直線l的距離為1,則該圓的半徑r的取值范圍是
2<r<4

查看答案和解析>>

同步練習(xí)冊(cè)答案