如圖,點D、E分別在等邊三角形ABC的邊BC、AC上,且BD=CE,連接AD、BE相交于點P,則∠APE的度數(shù)是


  1. A.
    60°
  2. B.
    55°
  3. C.
    45°
  4. D.
    30°
A
分析:根據(jù)題干條件:AB=BC,BD=CE,∠ABD=∠C可以判定△ABD≌△BCE,即可得到∠BAD=∠CBE,又知∠APE=∠ABP+∠BAP,故知∠APE=∠ABP+∠CBE=∠B.
解答:∵△ABC是等邊三角形,
∴AB=BC,∠ABD=∠C=60°,
又知BD=CE,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠APE=∠ABP+∠BAP,
∴∠APE=∠ABP+∠CBE=∠ABC=60°,
故選A.
點評:本題主要考查等邊三角形的性質和全等三角形的判定與性質的知識點,解答本題的關鍵是能看出∠APE=∠ABP+∠BAP,還要熟練掌握三角形全等的判定與性質定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當
b
a
是整數(shù)時,滿足條件的整數(shù)k的值共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,點M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,點D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補充下列一個條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A、B分別在直線l1、l2上,過點A作到l2的距離AM,過點B作直線l3∥l1

查看答案和解析>>

同步練習冊答案