【題目】如圖,CD為⊙O的直徑,CD⊥AB,垂足為點F,AO⊥BC,垂足為點E,AO=1.
(1)求∠C的大小;
(2)求陰影部分的面積.
【答案】解:(1)∵CD是圓O的直徑,CD⊥AB,∴。∴∠C=∠AOD。
∵∠AOD=∠COE,∴∠C=∠COE。
∵AO⊥BC,∴∠C=30°。
(2)連接OB,
由(1)知,∠C=30°,∴∠AOD=60°。∴∠AOB=120°。
在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=。
∴AB=。
∴。
【解析】試題分析:(1)根據(jù)垂徑定理可得=,∠C=∠AOD,然后在Rt△COE中可求出∠C的度數(shù).
(2)連接OB,根據(jù)(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根據(jù)S陰影=S扇形OAB﹣S△OAB,即可得出答案.
解:(1)∵CD是圓O的直徑,CD⊥AB,
∴=,
∴∠C=∠AOD,
∵∠AOD=∠COE,
∴∠C=∠COE,
∵AO⊥BC,
∴∠C=30°.
(2)連接OB,
由(1)知,∠C=30°,
∴∠AOD=60°,
∴∠AOB=120°,
在Rt△AOF中,AO=1,∠AOF=60°,
∴AF=,OF=,
∴AB=,
∴S陰影=S扇形OADB﹣S△OAB=﹣××=π﹣.
科目:初中數(shù)學 來源: 題型:
【題目】能夠刻畫一組數(shù)據(jù)離散程度的統(tǒng)計量是( )
A. 平均數(shù)
B. 眾數(shù)
C. 中位數(shù)
D. 方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點對應的有理數(shù)分別為10和15,點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向運動,點Q同時從原點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設運動時間為t秒.
(1)當0<t<5時,用含t的式子表示BP,AQ
(2)當t=2時,求PQ的值;
(3)當PQ=AB時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中能夠成立的是( 。
A. (x+2y)2=x2+2xy+4y2 B. (x+2y)2=x2+4y2
C. (x﹣y)2=x2﹣2xy﹣y2 D. (a﹣b)2=(b﹣a)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解九年級學生體育測試成績情況,以九年(1)班學生的體育測試成績?yōu)闃颖,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制如下兩幅統(tǒng)計圖,請你結合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)
(1)寫出D級學生的人數(shù)占全班總人數(shù)的百分比為 ,C級學生所在的扇形圓心角的度數(shù)為 ;
(2)該班學生體育測試成績的中位數(shù)落在等級 內;
(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距80km,甲、乙兩人沿同一條路從A地到B地.l1,l2分別表示甲、乙兩人離開A地的距離s(km)與時間t(h)之間的關系.
(1) 乙先出發(fā)________h后,甲才出發(fā);
(2) 請分別求出甲、乙的速度;并直接寫出l1、、l2的表達式.
(3) 甲到達B地時,乙距B地還有多遠?,乙還需幾小時到達B地?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀,然后解答提出的問題:
設a,b是有理數(shù),且滿足a+b=3﹣2,求ba的值.
解:由題意得(a﹣3)+(b+2)=0,因為a,b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),
由于是無理數(shù),所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以ba=(﹣2)3=﹣8.問題:設x,y都是有理數(shù),且滿足x2﹣2y+y=8+4,求x+y的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com