【題目】己知有理數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)分別是三點(diǎn),且滿足:①多項(xiàng)式是關(guān)于的二次三項(xiàng)式:②
請(qǐng)?jiān)趫D1的數(shù)軸上描出三點(diǎn),并直接寫出三數(shù)之間的大小關(guān)系(用“<”連接) ;
點(diǎn)為數(shù)軸上點(diǎn)右側(cè)一點(diǎn),且點(diǎn)到點(diǎn)的距離是到點(diǎn)距離的倍,求點(diǎn)在數(shù)軸上所對(duì)應(yīng)的有理數(shù);
點(diǎn)在數(shù)軸上以每秒個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí)點(diǎn)和點(diǎn)在數(shù)軸上分別以每秒個(gè)單位長度和個(gè)單位長度的速度向右運(yùn)動(dòng)(其中),若在整個(gè)運(yùn)動(dòng)的過程中,點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離差始終不變,求的值.
【答案】(1)a<b<c;(2)點(diǎn)P在數(shù)軸上所對(duì)應(yīng)的有理數(shù)是12;(3)m=.
【解析】
(1)根據(jù)題意列方程即可得到結(jié)論;
(2)設(shè)點(diǎn)P在數(shù)軸上所對(duì)應(yīng)的有理數(shù)為x,列方程即可得到結(jié)論;
(3)設(shè)運(yùn)動(dòng)時(shí)間為t,根據(jù)題意列方程即可得到結(jié)論.
解:(1)∵多項(xiàng)式是關(guān)于的二次三項(xiàng)式,
∴=2,a-2≠0,
∴a=﹣2,
∵(b-1)2+=0,
∴b-1=0,c-5=0,
∴b=1,c=5,
∴a,b,c三數(shù)之間的大小關(guān)系為a<b<c,
如圖,在圖1數(shù)軸上描出A、B、C三點(diǎn)位置.
故答案為:a<b<c.
(2)設(shè)點(diǎn)P在數(shù)軸上所對(duì)應(yīng)的有理數(shù)為x,
由題意得,x+2=2(x-5),
解得:x=12,
∴點(diǎn)P在數(shù)軸上所對(duì)應(yīng)的有理數(shù)是12;
(3)設(shè)運(yùn)動(dòng)時(shí)間為t,此時(shí)A對(duì)應(yīng)的數(shù)為(-2-t);B對(duì)應(yīng)的數(shù)為(1+mt);C對(duì)應(yīng)的數(shù)為(5+4t).
根據(jù)題意得,[(1+mt)-(-2-t)]-[(5+4t)-(1+mt)]=[1-(-2)]-(5-1),
解得:m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達(dá)式;
②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC=10cm,BC=12cm,D為BC上一點(diǎn),連接AD,E為AD上一點(diǎn),連接BE,若∠ABE=∠BAE═∠BAC,則DE的長為( )
A.cmB.cmC.cmD.1cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx交x軸的負(fù)半軸于點(diǎn)A.點(diǎn)B是y軸正半軸上一點(diǎn),點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn)A′恰好落在拋物線上.過點(diǎn)A′作x軸的平行線交拋物線于另一點(diǎn)C.若點(diǎn)A′的橫坐標(biāo)為1,則A′C的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別是數(shù)軸上四個(gè)整數(shù)所對(duì)應(yīng)的點(diǎn),其中有一點(diǎn)是原點(diǎn),并且這四個(gè)整數(shù)點(diǎn)每相鄰兩點(diǎn)之間的距離為1個(gè)單位長度.?dāng)?shù)對(duì)應(yīng)的點(diǎn)在與之間,數(shù)對(duì)應(yīng)的點(diǎn)在與之間.若,則原點(diǎn)是( )
A.或B.與C.與D.與
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC≌△ADE,線段BC的延長線過點(diǎn)E,與線段AD交于點(diǎn)F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,則∠DEF的度數(shù)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,分別過點(diǎn)B、C兩點(diǎn)作過點(diǎn)A的直線的垂線,垂足為M、N.
(1)如圖1,當(dāng)M、N兩點(diǎn)在直線BC的同側(cè)時(shí),求證:BM+CN=MN;
(2)如圖2,當(dāng)M、N兩點(diǎn)在直線BC的兩側(cè)時(shí),BM、CN、MN三條線段的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-x2+2x+3與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的表達(dá)式;
(2)拋物線的對(duì)稱軸上存在點(diǎn)P,使∠APB=∠ABC,利用圖①求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在y軸右側(cè)的拋物線上,利用圖②比較∠OCQ與∠OCA的大小,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com