【題目】如圖,在矩形中,,過矩形的對角線交點作直線分別交、于點,連接,若是等腰三角形,則____.
【答案】或
【解析】
連接AC,由矩形的性質(zhì)得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA證明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三種情討論:
①當(dāng)AE=AF時,設(shè)AE=AF=CF=x,則BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;
②當(dāng)AF=EF時,作FG⊥AE于G,則AG=AE=BF,設(shè)AE=CF=x,則BF=6-x,AG=x,得出方程x=6-x,解方程即可;
③當(dāng)AE=FE時,作EH⊥BC于H,設(shè)AE=FE=CF=x,則BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程無解;即可得出答案.
解:連接AC,如圖1所示:
∵四邊形ABCD是矩形,
∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,
∴∠OAE=∠OCF,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,若△AEF是等腰三角形,分三種情討論:
①當(dāng)AE=AF時,如圖1所示:
設(shè)AE=AF=CF=x,則BF=6-x,
在Rt△ABF中,由勾股定理得:42+(6-x)2=x2,
解得:x=,
即AE=;
②當(dāng)AF=EF時,
作FG⊥AE于G,如圖2所示:
則AG=AE=BF,
設(shè)AE=CF=x,則BF=6-x,AG=x,
所以x=6-x,
解得:x=4;
③當(dāng)AE=FE時,作EH⊥BC于H,如圖3所示:
設(shè)AE=FE=CF=x,則BF=6-x,CH=DE=6-x,
∴FH=CF-CH=x-(6-x)=2x-6,
在Rt△EFH中,由勾股定理得:42+(2x-6)2=x2,
整理得:3x2-24x+52=0,
∵△=(-24)2-4×3×52<0,
∴此方程無解;
綜上所述:△AEF是等腰三角形,則AE為或4;
故答案為:或4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片()折疊,使點剛好落在線段上,且折痕分別與邊,相交于點,,設(shè)折疊后點,的對應(yīng)點分別為點,.
(1)判斷四邊形的形狀,并證明你的結(jié)論;
(2)若,且四邊形的面積,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著近幾年我市私家車日越增多,超速行駛成為引發(fā)交通事故的主要原因之一.某中學(xué)數(shù)學(xué)活動小組為開展“文明駕駛、關(guān)愛家人、關(guān)愛他人”的活動,設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點P,在筆直的車道m(xù)上確定點O,使PO和m垂直,測得PO的長等于21米,在m上的同側(cè)取點A、B,使∠PAO=30°,∠PBO=60°.
(1)求A、B之間的路程(保留根號);
(2)已知本路段對校車限速為12米/秒若測得某校車從A到B用了2秒,這輛校車是否超速?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,結(jié)論:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正確的有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蚌埠“一帶一路”國際龍舟邀請賽期間,小青所在學(xué)校組織了一次“龍舟”故事知多少比賽,小青從全體學(xué)生中隨機抽取部分同學(xué)的分數(shù)(得分取正整數(shù),滿分為100分)進行統(tǒng)計.以下是根據(jù)抽取同學(xué)的分數(shù)制作的不完整的頻率分布表和頻率分布直方圖,請根據(jù)圖表,回答下列問題: :
組別 | 分組 | 頻數(shù) | 頻率 |
1 | 9 | 0.18 | |
2 | |||
3 | 21 | 0.42 | |
4 | 0.06 | ||
5 | 2 |
(1)根據(jù)上表填空: __,=. ,= .
(2)若小青的測試成績是抽取的同學(xué)成績的中位數(shù),那么小青的測試成績在什么范圍內(nèi)?
(3)若規(guī)定:得分在的為“優(yōu)秀”,若小青所在學(xué)校共有600名學(xué)生,從本次比賽選取得分為“優(yōu)秀”的學(xué)生參加決賽,請問共有多少名學(xué)生被選拔參加決賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=3,BC=4.分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BDMC,四塊陰影部分的面積分別為S1、S2、S3、S4.則S1+S2+S3+S4等于( )
A.14 B.16 C.18 D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】灌云教育局為了解今年九年級學(xué)生體育測試情況,隨機抽查了部分學(xué)生的體育測試成績?yōu)闃颖荆碅、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)請把條形統(tǒng)計圖補充完整;
(2)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是_____________;
(3)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是_____________;
(4)若該縣九年級有8000名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調(diào)查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:
請依據(jù)統(tǒng)計結(jié)果回答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 位好友.
(2)已知A類好友人數(shù)是D類好友人數(shù)的5倍.
①請補全條形圖;
②扇形圖中,“A”對應(yīng)扇形的圓心角為 度.
③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com