如圖,在平行四邊形ABCD中,AD=4cm,∠A=60°,BD⊥AD.動點P、Q同時以每秒1cm的速度分別從A、C出發(fā),點P沿A→B→C的路線、點Q沿C→B→A的路線勻速運動,過點Q做QE⊥CD,交折線CDA于點E,設(shè)點P的運動時間為t,△PQE的面積為S.
(1)求AB的長;
(2)當(dāng)t=3秒時,求S的值;
(3)求S關(guān)于t的函數(shù)關(guān)系式;
(4)直接寫出△PQE為直角三角形時t的取值.
分析:(1)在Rt△ABD中,由∠A=60°,BD⊥AD就可以得出∠ABD=30°,根據(jù)30°的直角三角形的性質(zhì)就可以得出AB的值;
(2)當(dāng)t=3時,作QF⊥AB的延長線于點F,由30°直角三角形的性質(zhì)及勾股定理就可以求出BF、EQ的值,由三角形的面積公式就可以求出S的值;
(3)分類討論,當(dāng)0≤t≤4 如圖1,②當(dāng)4<t≤6 如圖2,③當(dāng)6<t≤8 如圖3,④當(dāng)8<t≤10 如圖4,⑤當(dāng)10<t≤12 如圖5,分別根據(jù)三角形的面積公式就可以求出S的表達(dá)式;
(4)由(3)可以知道,如圖2和如圖3可以知道當(dāng)∠PQE=90°時t的值,如圖5,當(dāng)∠QEP=90°時,作PF⊥AB的延長線于F,就可以得到四邊形QFPE是矩形,由其性質(zhì)可以得出QE=PF,就有
3
(12-t)
=
3
×
t-8
2
就可以求出t的值.
解答:解:(1)∵BD⊥AD,
∴∠ADB=90°
AB=
AD
cos60°
=8


(2)當(dāng)點P運動3秒時,AP=CQ=3,PB=5,
∴BQ=1,
由∠A=60°,知BF=
1
2
,EQ=
3
3
2

∴S△PQE=
1
2
•EQ•PF=
1
2
3
3
2
•(5+
1
2
)=
33
3
8


(3)①當(dāng)0≤t≤4 時,如圖1,
∴AP=CQ=t,PB=8-t.
∵四邊形ABCD是平行四邊形,
∴∠A=∠C=60°,AD=BC=4,AB=CD=8,
∵QE⊥CD,
∴∠QEC=90°,
∴∠EQC=30°,
∴EC=
1
2
t,EQ=
3
2
t,
∴FB=
4-t
2

S=
1
2
3
2
t•(8-t+
4-t
2
)=-
3
3
8
t2+
5
3
2
t

②當(dāng)4<t≤6 時,如圖2,
S=
1
2
•2
3
•(12-2t)=-2
3
t+12
3
;
③當(dāng)6<t≤8時,如圖3,
S=
1
2
•2
3
•(2t-12)=2
3
t-12
3
;
④當(dāng)8<t≤10時,如圖4
S=
1
2
•2
3
(t-4+
t-8
2
)=
3
3
2
t-8
3

⑤當(dāng)10<t≤12時,如圖5,
AQ=12-t,QE=
3
(12-t),
S=
1
2
3
(12-t)(t-4+
t-8
2
)=-
3
3
4
t2+13
3
t-48
3
 
(4)由題意,得
如圖2,4≤t<6時,△PQE為直角三角形,
如圖3,6<t≤8時,△PQE為直角三角形,
如圖5,當(dāng)∠PQE=90°時,作PF⊥AB的延長線于F,
∴∠PFB=90°,
∴四邊形QFPE是矩形,
∴QE=PF,
3
(12-t)
=
3
×
t-8
2

t=
32
3
點評:本題是一道有關(guān)四邊形的動點問題的綜合試題,考查了30°的直角三角形的性質(zhì)的運用,勾股定理的運用,三角形的面積公式的運用,平行四邊形的性質(zhì)的運用,矩形的判定及性質(zhì)的而運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點E,∠ADC的平分線交AB于點F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點M是邊AD上一點,且DM:AD=1:3.點E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點B運動(當(dāng)點F運動到點B時,點E隨之停止運動),EM、CD精英家教網(wǎng)的延長線交于點P,F(xiàn)P交AD于點Q.設(shè)運動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案