【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l1yk1x+b過(guò)A0,﹣3),B5,2),直線(xiàn)l2yk2x+2

1)求直線(xiàn)l1的表達(dá)式;

2)當(dāng)x≥4時(shí),不等式k1x+bk2x+2恒成立,請(qǐng)寫(xiě)出一個(gè)滿(mǎn)足題意的k2的值.

【答案】1yx3;(2k2=﹣1滿(mǎn)足題意.

【解析】

1)把A0,-3),B5,2)代入y=k1x+b,利用待定系數(shù)法即可求出直線(xiàn)l1的表達(dá)式;

2)根據(jù)題意,把x=4代入k1x+bk2x+2,求出k2的范圍,進(jìn)而求解即可.

1直線(xiàn)l1yk1x+b過(guò)A0,﹣3),B5,2),

,解得,

直線(xiàn)l1的表達(dá)式為yx3;

2當(dāng)x≥4時(shí),不等式x3k2x+2恒成立,

∴434k2+2,

k2=﹣1滿(mǎn)足題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為

A(6,0)、B(0,2),以AB為斜邊在右上方作Rt△ABC.設(shè)點(diǎn)C坐標(biāo)為(x,y),則(x+y)的最大值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2bxC的圖象與坐標(biāo)軸交于A、BC三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(-4,0).

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.

①求S的最大值;

②在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),請(qǐng)直接寫(xiě)出此時(shí)S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)L1y=-x22x3x軸于A,B兩點(diǎn),交y軸于M點(diǎn)拋物線(xiàn)L1向右平移2個(gè)單位得到拋物線(xiàn)L2L2x軸于C,D兩點(diǎn).

(1)求拋物線(xiàn)L2對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)拋物線(xiàn)L1L2x軸上方的部分是否存在點(diǎn)N,使以A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)P是拋物線(xiàn)L1上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)AB重合),那么點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)Q是否在拋物線(xiàn)L2上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,四邊形是正方形,點(diǎn)為正方形對(duì)角線(xiàn)的交點(diǎn),點(diǎn),點(diǎn),點(diǎn).分別延長(zhǎng),,使,,再以,為鄰邊作平行四邊形.

(Ⅰ)求點(diǎn)的坐標(biāo);

(Ⅱ)如圖②,將四邊形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得四邊形,點(diǎn),,旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為,,旋轉(zhuǎn)角為.

①旋轉(zhuǎn)過(guò)程中,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

②在旋轉(zhuǎn)過(guò)程中,求的取值范圍(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,點(diǎn),,分別是,,的中點(diǎn),連接

1)如圖①,,點(diǎn)上,則 ;

2)如圖②,,點(diǎn)不在上,判斷的度數(shù),并證明你的結(jié)論;

3)連接,若,,固定,將繞點(diǎn)旋轉(zhuǎn),當(dāng)的長(zhǎng)最大時(shí),的長(zhǎng)為 (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年由于防控疫情,師生居家隔離線(xiàn)上學(xué)習(xí),ABCD是社區(qū)兩棟鄰樓的示意圖,小華站在自家陽(yáng)臺(tái)的C點(diǎn),測(cè)得對(duì)面樓頂點(diǎn)A的仰角為30°,地面點(diǎn)E的俯角為45°.點(diǎn)E在線(xiàn)段BD上.測(cè)得B,E間距離為8.7米.樓AB12米.求小華家陽(yáng)臺(tái)距地面高度CD的長(zhǎng)(結(jié)果精確到1米,1.41,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,ECD邊上一點(diǎn),

(1)將ADE繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),使AD、AB重合,得到ABF,如圖1所示.觀察可知:與DE相等的線(xiàn)段是   ,AFB=   

(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點(diǎn),且∠PAQ=45°,試通過(guò)旋轉(zhuǎn)的方式說(shuō)明:DQ+BP=PQ;

(3)在(2)題中,連接BD分別交AP、AQM、N,你還能用旋轉(zhuǎn)的思想說(shuō)明BM2+DN2=MN2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)拋物線(xiàn)過(guò)點(diǎn),對(duì)稱(chēng)軸為直線(xiàn)

1)求二次函數(shù)的表達(dá)式和頂點(diǎn)的坐標(biāo).

2)將拋物線(xiàn)在坐標(biāo)平面內(nèi)平移,使其過(guò)原點(diǎn),若在平移后,第二象限的拋物線(xiàn)上存在點(diǎn),使為等腰直角三角形,請(qǐng)求出拋物線(xiàn)平移后的表達(dá)式,并指出其中一種情況的平移方式.

查看答案和解析>>

同步練習(xí)冊(cè)答案