【題目】由大小兩種貨車,3輛大車與4輛小車一次可以運(yùn)貨22噸,2輛大車與6輛小車一次可以運(yùn)貨23噸.請(qǐng)根據(jù)以上信息,提出一個(gè)能用方程(組)解決的問(wèn)題,并寫出這個(gè)問(wèn)題的解答過(guò)程.

【答案】解:本題的答案不唯一.問(wèn)題:1輛大車與1輛小車一次可以運(yùn)貨多少噸?設(shè)1輛大車一次運(yùn)貨x噸,1輛小車一次運(yùn)貨y噸.
根據(jù)題意,得,解得.則x+y=4+2.5=6.5(噸).答:1輛大車與1輛小車一次可以運(yùn)貨6.5噸.
【解析】1輛大車與1輛小車一次可以運(yùn)貨多少噸?根據(jù)題意可知,本題中的等量關(guān)系是“3輛大車與4輛小車一次可以運(yùn)貨22噸”和“2輛大車與6輛小車一次可以運(yùn)貨23噸”,列方程組求解即可.
1輛大車與1輛小車一次可以運(yùn)貨多少噸?根據(jù)題意可知,本題中的等量關(guān)系是“3輛大車與4輛小車一次可以運(yùn)貨22噸”和“2輛大車與6輛小車一次可以運(yùn)貨23噸”,列方程組求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是某副食品公司銷售糖果的總利潤(rùn)y(元)與銷售量x(千克)之間的函數(shù)圖象(總利潤(rùn)=總銷售額﹣總成本),該公司想通過(guò)“不改變總成本,提高糖果售價(jià)”的方案解決銷售不佳的現(xiàn)狀,下面給出的四個(gè)圖象,虛線均表示新的銷售方案中總利潤(rùn)與銷售量之間的函數(shù)圖象,則能反映該公司改進(jìn)方案的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=a(x﹣1)2﹣c的圖象如圖所示,則一次函數(shù)y=ax+c的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A、B,點(diǎn)B的坐標(biāo)為(2,2).過(guò)點(diǎn)A作AC⊥x軸,垂足為C,過(guò)點(diǎn)B作BD⊥y軸,垂足為D,AC與BD交于點(diǎn)F.一次函數(shù)y=ax+b的圖象經(jīng)過(guò)點(diǎn)A、D,與x軸的負(fù)半軸交于點(diǎn)E

(1)若AC=OD,求a、b的值。
(2)若BC∥AE,求BC的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,F(xiàn) 是DC上一點(diǎn),BF⊥AC,垂足為 E,=,△CEF的面積為S1 , △AEB的面積為S2 , 則的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ繞點(diǎn)P旋轉(zhuǎn),得到△PDE,點(diǎn)D落在線段PQ上.

(1)求證:PQ∥AB
(2)若點(diǎn)D在∠BAC的平分線上,求CP的長(zhǎng)。
(3)若△PDE與△ABC重疊部分圖形的周長(zhǎng)為T,且12≤T≤16,求x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,測(cè)得∠CAO=45°,輪船甲自西向東勻速行駛,同時(shí)輪船乙沿正北方向勻速行駛,它們的速度分別為45km/h和36km/h,經(jīng)過(guò)0.1h,輪船甲行駛至B處,輪船乙行駛至D處,測(cè)得∠DBO=58°,此時(shí)B處距離碼頭O多遠(yuǎn)?(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F.

(1)試說(shuō)明DF是⊙O的切線
(2)若AC=3AE,求tanC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,∠CAB=∠ACB,過(guò)點(diǎn)B作BE⊥AB交AC于點(diǎn)E.

(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案