證明:四個(gè)連續(xù)正整數(shù)的積與1的和,一定是一個(gè)完全平方數(shù).
略證:(n-1)n(n+1)(n+2)+1=(n2+n-2)(n2+n)+1=(n2+n)2-2(n2+n)+1=(n2+n-1)2(其中n為正整數(shù),且n>1). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo)教材導(dǎo)學(xué) 數(shù)學(xué)七年級(jí)(第一學(xué)期) 題型:044
四個(gè)連續(xù)自然數(shù)的積再加上1一定是一個(gè)完全平方數(shù).完全平方數(shù)是這樣一種數(shù):它可以寫(xiě)成一個(gè)正整數(shù)的平方.例如:16是4的平方,81是9的平方.
我們看下面的例子:
1·2·3·4+1=25(=52);2·3·4·5+1=121(=112);
3·4·5·6+1=361(=192);
如果我們?cè)O(shè)四個(gè)連續(xù)自然數(shù)中最小的一個(gè)是n,那么這四個(gè)連續(xù)自然數(shù)的積加上1的和可以表示為n(n+1)(n+2)(n+3)+1,它的結(jié)果是n2+3n+1的平方,因?yàn)閚為自然數(shù),所以n2+3n+1也是一個(gè)自然數(shù),即:
n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.①
學(xué)到整式的乘法時(shí),我們還可以證明這個(gè)等式成立.
當(dāng)n取任意自然數(shù)代入①,不僅可以知道n(n+l)(n+2)(n+3)+1是一個(gè)完全平方數(shù),還可以知道它是什么數(shù)的平方.
你可以算一算:20·21·22·23+1=?,50·51·52·53+1=?
同學(xué)們,根據(jù)同樣的道理,四個(gè)連續(xù)偶數(shù)(或奇數(shù))的積再加上16是一個(gè)完全平方數(shù)嗎?請(qǐng)你試一試.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com