如圖,∠ACB=90°,AC=3,BC=4,則以AB為邊長的正方形面積為  


25

【考點】勾股定理.

【分析】根據(jù)勾股定理求出AB,根據(jù)正方形的面積公式求出即可.

【解答】解:由勾股定理得:AB==5,

所以以AB為邊長的正方形的面積為52=25,

故答案為:25.

【點評】本題考查了勾股定理的應(yīng)用,能根據(jù)勾股定理求出AB的長是解此題的關(guān)鍵.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


不等式2x﹣6>0的解集在數(shù)軸上表示正確的是( 。

A.      B.      

C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求陰影部分的面積為  cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在﹣,,﹣,2,2.313131…中,無理數(shù)有( 。

A.2個  B.3個   C.4個  D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知直線l分別與x軸、y軸交于A、B兩點,與雙曲線y=(m≠0,x>0)分別交于D、E兩點,若點D的坐標為(4,1),點E的坐標為(1,n)

(1)分別求出直線l與雙曲線的解析式;

(2)求△EOD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在正方形ABCD中,AB=3cm,動點M自A點出發(fā)沿AB方向以每秒1cm的速度向B點運動,同時動點N自A點出發(fā)沿折線AD﹣DC﹣CB以每秒3cm的速度運動,到達B點時運動同時停止.設(shè)△AMN的面積為y(cm2),運動時間為x(秒),則下列圖象中能大致反映y與x之間的函數(shù)關(guān)系的是(  )

A.  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


今年3月5日,李克強總理在《政府工作報告》中指出,到2020年,我國經(jīng)濟總量將超過90萬億元,90萬億元用科學記數(shù)法表示為( 。

A.9×1011元  B.90×1010元       C.9×1012元  D.9×1013

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


等腰三角形邊長分別為a,b,2,且a,b是關(guān)于x的一元二次方程x2﹣6x+n﹣1=0的兩根,則n的值為

( 。

A.9       B.10     C.9或10     D.8或10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


某體育用品專賣店銷售7個籃球和9個排球的總利潤為355元,銷售10個籃球和20個排球的總利潤為650元.

(1)求每個籃球和每個排球的銷售利潤;

(2)已知每個籃球的進價為200元,每個排球的進價為160元,若該專賣店計劃用不超過17400元購進籃球和排球共100個,且要求籃球數(shù)量不少于排球數(shù)量的一半,請你為專賣店設(shè)計符合要求的進貨方案.

查看答案和解析>>

同步練習冊答案