(2005•武漢)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A、B兩點,過點A作直線l與x軸負方向相交成60°角.以點O2(13,5)為圓心的圓與x軸相切于點D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,同時直線l沿x軸向右平移,當⊙O2第一次與⊙O1相切時,直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點E,EG為⊙O2的直徑,過點A作⊙O2的切線,切⊙O2于另一點F,連接AO2、FG,那么FG•AO2的值是否會發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.
【答案】分析:因為⊙O2不斷移動的同時,直線l也在進行著移動,而圓與圓的位置關系有:相離(外離,內含),相交、相切(外切、內切〕,直線和圓的位置關系有:相交、相切、相離,所以這樣一來,我們在分析過程中不能忽略所有的可能情況.
解答:解:(1)設直線l與y軸交于點N,
直線l經(jīng)過點A(-12,0),
∵∠OAN=60°,
∴tan30°=,
解得:NO=12,
故與y軸交于點(0,),
設解析式為y=kx+b,則b=,k=,
∴直線l的解析式為y=-x-12;

(2)⊙O2第一次與⊙O1相切時,向左平移了5秒(5個單位)如圖所示.
在5秒內直線l平移的距離計算:
8+12-=20-
所以直線l平移的速度為每秒(4-)個單位;

(3)其值不變.
∵Rt△EFG∽Rt△AEO2
于是可得:(其中O2E=EG)
所以FG•AO2=EG2=50,即其值不變.
點評:本題綜合考查了直線與圓、圓與圓的位置關系,全等三角形的判定,圖形的平移變換等多個知識點.考查學生綜合運用數(shù)學的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A、B兩點,過點A作直線l與x軸負方向相交成60°角.以點O2(13,5)為圓心的圓與x軸相切于點D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,同時直線l沿x軸向右平移,當⊙O2第一次與⊙O1相切時,直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點E,EG為⊙O2的直徑,過點A作⊙O2的切線,切⊙O2于另一點F,連接AO2、FG,那么FG•AO2的值是否會發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系.y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內設雙行道,現(xiàn)有一輛貨運卡車高4.2m,寬2.4米,這輛貨運卡車能否通過該隧道?通過計算說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年文星鎮(zhèn)中考模擬試卷(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A、B兩點,過點A作直線l與x軸負方向相交成60°角.以點O2(13,5)為圓心的圓與x軸相切于點D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,同時直線l沿x軸向右平移,當⊙O2第一次與⊙O1相切時,直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點E,EG為⊙O2的直徑,過點A作⊙O2的切線,切⊙O2于另一點F,連接AO2、FG,那么FG•AO2的值是否會發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省武漢市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系.y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內設雙行道,現(xiàn)有一輛貨運卡車高4.2m,寬2.4米,這輛貨運卡車能否通過該隧道?通過計算說明你的結論.

查看答案和解析>>

同步練習冊答案