【題目】如圖,在ABCD中,點E是AD的中點,延長BC到點F,使CF:BC=1:2,連接DF,EC.若AB=5,AD=8,sinB= ,則DF的長等于(
A.
B.
C.
D.2

【答案】C
【解析】證明:如圖,在ABCD中,∠B=∠ADC,AB=CD=5,AD∥BC,且AD=BC=8. ∵E是AD的中點,
∴DE= AD.
又∵CF:BC=1:2,
∴DE=CF,且DE∥CF,
∴四邊形CFDE是平行四邊形.
∴CE=DF.
過點C作CH⊥AD于點H.
又∵sinB= ,
∴sin∠CDH= = = ,
∴CH=4.
在Rt△CDH中,由勾股定理得到:DH= =3,則EH=4﹣3=1,
∴在Rt△CEH中,由勾股定理得到:EC= = = ,
則DF=EC=
故選:C.

【考點精析】本題主要考查了勾股定理的概念和平行四邊形的判定與性質(zhì)的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的解析表達(dá)式為y=-3x+3,且l1x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2,交于點C

1)求點D的坐標(biāo);

2)求直線l2的解析表達(dá)式;

3)求ADC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用火柴棒按下列方式搭三角形:

(1)填寫下面表

三角形個數(shù)

1

2

3

4

火柴棒根數(shù)

(2)10個這樣的三角形需要 根火柴棒.

(3)n個這樣的三角形需要 根火柴棒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10)在一次數(shù)學(xué)考試中,從某班隨機(jī)抽取的10名學(xué)生得分(單位:分)如下:75,85,9090,95,85,95,95,10098.

(1)求這10名學(xué)生得分的眾數(shù)、中位數(shù)和平均數(shù);

(2)若該班共有40名學(xué)生,估計此次考試的平均成績約為多少

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)校開展孝敬父母,從家務(wù)勞動做起活動的實施情況,該校抽取八年級名學(xué)生,調(diào)查他們一周(按七天計算)做家務(wù)所用時間(單位:小時)得到一組數(shù)據(jù),繪制成下表:

時間(小時)

劃記

人數(shù)

所占百分比

正正正

正正正

正正

合計

(1)請?zhí)畋碇形赐瓿傻牟糠郑?/span>

(2)根據(jù)以上信息判斷,每周做家務(wù)的時間不超過小時的學(xué)生所占的百分比是多少?

(3)針對以上情況,寫出一個20字以內(nèi)的倡導(dǎo)孝敬父母,熱愛勞動的句子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)在上學(xué)期的幾次測試中,小張和小王的幾次數(shù)學(xué)成績(單位:分)如下表:

兩人都說自己的數(shù)學(xué)成績更好請你想一想:

(1)小張可能是根據(jù)什么來判斷的?小王可能是根據(jù)什么來判斷的?

(2)你能根據(jù)小張的想法設(shè)計一種方案使小張的成績比小王的高嗎?寫出你的方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀題:課本上有這樣一道例題:解方程:

解:去分母得:

6(x+15)=15-10(x-7)

6x+90=15-10x+70

16x=-5

x=-

請回答下列問題:

(1)得到①式的依據(jù)是________;

(2)得到②式的依據(jù)是________;

(3)得到③式的依據(jù)是________;

(4)得到④式的依據(jù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,DECE,連接AE并延長交BC的延長線于點F.

(1)求證:△ADE≌△FCE;

(2)AB2BC,F36°求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案