【題目】如圖,在等腰△ABC中,ABAC,以AB為直徑的圓OBC于點(diǎn)D,過點(diǎn)CCFAB,與O的切線BE交于點(diǎn)E,連接DE

1)求證:BDCD;

2)求證:△CAB∽△CDE

3)設(shè)△ABC的面積為S1,△CDE的面積為S2,直徑AB的長(zhǎng)為x,若∠ABC30°,S1S2 滿足S1+S2,試求x的值.

【答案】1)詳見解析;(2)詳見解析;(3x8..

【解析】

1)因?yàn)?/span>ABAC,欲證明BDDC,只要證明ADBC即可.

2)可以根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似進(jìn)行證明.

3)分別用x表示S1S2,列出方程即可解決問題.

1)證明:∵AB是直徑,

∴∠ADB90°

ADBC,

ABAC,

BDCD

2)∵ABCE,

∴∠2=∠1,

ABAC

∴∠1=∠3,

BE是⊙O切線,

∴∠ABE90°,

ABCE,

∴∠BEC+ABE90°,

∴∠BEC90°,

BDDC,

DEDBDC,

∴∠2=∠4,

∴∠3=∠2,∠1=∠4,

∴△CAB∽△CDE

3)∵S1

∵△CAB∽△CDE

,

S2,

由題意:,

x±8,

x0,

x8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震牽動(dòng)著全國(guó)人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動(dòng).第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增長(zhǎng)率相同,求捐款增長(zhǎng)率;

(2)按照(1)中收到捐款的增長(zhǎng)速度,第四天該單位能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班10名學(xué)生校服尺寸與對(duì)應(yīng)人數(shù)如圖所示,那么這10名學(xué)生校服尺寸的中位數(shù)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩位運(yùn)動(dòng)員中選出一名參加在規(guī)定時(shí)間內(nèi)的投籃比賽.預(yù)先對(duì)這兩名運(yùn)動(dòng)員進(jìn)行了6次測(cè)試,成績(jī)?nèi)缦拢▎挝唬簜(gè)):

甲:6,128,12,1012;

乙:910,11,10,128;

1)填表:

平均數(shù)

眾數(shù)

方差

10

   

   

   

10

2)根據(jù)測(cè)試成績(jī),請(qǐng)你運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí)作出分析,派哪一位運(yùn)動(dòng)員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年422日是第50個(gè)世界地球日,某校在八年級(jí)5個(gè)班中,每班各選拔10名學(xué)生參加“環(huán)保知識(shí)競(jìng)賽”并評(píng)出了一、二、三等獎(jiǎng)各若干名,學(xué)校將獲獎(jiǎng)情況繪成如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:

1)求本次競(jìng)賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);

3)已知甲、乙、丙、丁4位同學(xué)獲得一等獎(jiǎng),學(xué)校將采取隨機(jī)抽簽的方式在4人中選派2人參加上級(jí)團(tuán)委組織的“愛護(hù)環(huán)境、保護(hù)地球”知識(shí)競(jìng)賽,請(qǐng)求出抽到的2人恰好是甲和乙的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EF分別在BC,CD上,AEAFACEF相交于點(diǎn)G.下列結(jié)論:①AC垂直平分EF;②BE+DFEF;③當(dāng)∠DAF15°時(shí),△AEF為等邊三角形;④當(dāng)∠EAF60°時(shí),SABESCEF.其中正確的是( 。

A. ①③B. ②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.

(1)求二次函數(shù)的表達(dá)式;

(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;

(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以AC為直徑的⊙OAB于點(diǎn)D,連接CD,∠BCD=A.

1)求證:BC是⊙O的切線;

2)若BC=5,BD=3,求點(diǎn)OCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案