已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3" ,tan∠BAC=,將∠ABC對折,使點C的對應點H恰好落在直線AB上,折痕交AC于點O,以點O為坐標原點,AC所在直線為x軸建立平面直角坐標系

(1)求過A、B、O三點的拋物線解析式;
(2)若在線段AB上有一動點P,過P點作x軸的垂線,交拋物線于M,設PM的長度等于d,試探究d有無最大值,如果有,請求出最大值,如果沒有,請說明理由.
(3)若在拋物線上有一點E,在對稱軸上有一點F,且以O、A、E、F為頂點的四邊形為平行四邊形,試求出點E的坐標.

(1)y=;(2)當t=時,d有最大值,最大值為2;(3)

解析試題分析:(1)在Rt△ABC 中,根據(jù)∠BAC的正切函數(shù)可求得AC=4,再根據(jù)勾股定理求得AB,設OC=m,連接OH由對稱性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=4-m.在Rt△AOH 中,根據(jù)勾股定理可求得m的值,即可得到點O、A、B的坐標,根據(jù)拋物線的對稱性可設過A、B、O三點的拋物線的解析式為:y=ax(x-,再把B點坐標代入即可求得結(jié)果;
(2)設直線AB的解析式為y=kx+b,根據(jù)待定系數(shù)法求得直線AB的解析式,設動點P(t,),則M(t,),先表示出d關于t的函數(shù)關系式,再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果;
(3)設拋物線y=的頂點為D,先求得拋物線的對稱軸,與拋物線的頂點坐標,根據(jù)拋物線的對稱性,A、O兩點關于對稱軸對稱.分AO為平行四邊形的對角線時,AO為平行四邊形的邊時,根據(jù)平行四邊形的性質(zhì)求解即可.
(1)在Rt△ABC 中,∵BC="3" ,tan∠BAC=,
∴AC=4.
∴AB=
設OC=m,連接OH

由對稱性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,
∴AH=AB-BH=2,OA=4-m.
∴在Rt△AOH 中, OH2+AH2=OA2,即m2+22=(4-m)2,得 m=
∴OC=,OA=AC-OC=,
∴O(0,0) A(,0),B(-,3).
設過A、B、O三點的拋物線的解析式為:y=ax(x-).
把x=,y=3代入解析式,得a=
∴y=x(x-)=
即過A、B、O三點的拋物線的解析式為y=
(2)設直線AB的解析式為y=kx+b,根據(jù)題意得
,解之得,
∴直線AB的解析式為y=. 
設動點P(t,),則M(t,). 
∴d=()—()=—=
∴當t=時,d有最大值,最大值為2.
(3)設拋物線y=的頂點為D.
∵y==,
∴拋物線的對稱軸x=,頂點D(,-).
根據(jù)拋物線的對稱性,A、O兩點關于對稱軸對稱.
當AO為平行四邊形的對角線時,拋物線的頂點D以及點D關于x軸對稱的點F與A、O四點為頂點的四邊形一定是平行四邊形.這時點D即為點E,所以E點坐標為().
當AO為平行四邊形的邊時,由OA=,知拋物線存在點E的橫坐標為,即,
分別把x=和x=代入二次函數(shù)解析式y(tǒng)=中,得點E(,)或E(-,).
所以在拋物線上存在三個點:E1,-),E2,),E3(-),使以O、A、E、F為頂點的四邊形為平行四邊形.
考點:二次函數(shù)的綜合題
點評:此題綜合性較強,難度較大,注意掌握輔助線的作法是解此題的關鍵,注意數(shù)形結(jié)合思想與方程思想的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關系式,并求出x的取值范圍;
(4)設四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習冊答案