【題目】下列命題中,假命題有( ) ①兩點(diǎn)之間線段最短;②到角的兩邊距離相等的點(diǎn)在角的平分線上;
③過一點(diǎn)有且只有一條直線與已知直線平行;④垂直于同一直線的兩條直線平行;
⑤若⊙O的弦AB,CD交于點(diǎn)P,則PAPB=PCPD.
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】C
【解析】解:①兩點(diǎn)之間線段最短,說法正確,不是假命題; ②到角的兩邊距離相等的點(diǎn)在角的平分線上,說法正確,不是假命題;
③過直線外一點(diǎn)有且只有一條直線與已知直線平行,原來的說法錯(cuò)誤,是假命題;
④在同一平面內(nèi),垂直于同一直線的兩條直線平行,原來的說法錯(cuò)誤,是假命題;
⑤如圖,連接AC、BD.
∵∠A=∠D,∠C=∠B,
∴△ACP∽△DBP,
∴ = ,
∴PAPB=PCPD,
故若⊙O的弦AB,CD交于點(diǎn)P,則PAPB=PCPD的說法正確,不是假命題.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題與定理的相關(guān)知識(shí),掌握我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題.如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題;經(jīng)過證明被確認(rèn)正確的命題叫做定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在C處看到遠(yuǎn)處有一涼亭B,在涼亭B正東方向有一棵大樹A,這時(shí)此人在C處測(cè)得B在北偏西45°方向上,測(cè)得A在北偏東35°方向上.又測(cè)得A、C之間的距離為100米,求A、B之間的距離.(精確到1米).(參考數(shù)據(jù):sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):
(1)填寫如表:
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個(gè)數(shù) | 4 | 6 | … |
(2)如果原正方形被分割成2016個(gè)三角形,此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?
(3)上述條件下,正方形又能否被分割成2017個(gè)三角形?若能,此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說明理由.
(4)綜上結(jié)論,你有什么發(fā)現(xiàn)?(寫出一條即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,點(diǎn)E在BC上,把這個(gè)矩形沿EF折疊后,使點(diǎn)D恰好落在BC邊上的G點(diǎn)處,若矩形面積為4 且∠AFG=60°,GE=2BG,則折痕EF的長(zhǎng)為( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB= CD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長(zhǎng)為4的菱形ABCD紙片折疊,使點(diǎn)A恰好落在對(duì)角線的交點(diǎn)O處,若折痕EF=2 ,則∠A=( )
A.120°
B.100°
C.60°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形OABC的三個(gè)頂點(diǎn)A、B、C在以O(shè)為圓心的半圓上,過點(diǎn)C作CD⊥AB,分別交AB、AO的延長(zhǎng)線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.
(1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
(2)①求證:CF=OC; ②若半圓O的半徑為12,求陰影部分的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A,B兩點(diǎn),與x軸交于C點(diǎn),與y軸交于D點(diǎn);點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com