若等腰三角形的一個(gè)外角為150°,則其頂角度數(shù)為(  )
分析:由等腰三角形的一個(gè)外角為150°,可得此等腰三角形的一個(gè)內(nèi)角為150°,然后分別從若頂角為30°,若底角為30°,去分析求解即可求得答案.
解答:解:∵等腰三角形的一個(gè)外角為150°,
∴此等腰三角形的一個(gè)內(nèi)角為150°,
若頂角為30°,則底角為:
1
2
(180°-30°)=75°;
若底角為30°,則頂角為:180°-2×30°=120°.
∴其頂角度數(shù)為:30°或120°.
故選C.
點(diǎn)評(píng):此題考查了等腰三角形的性質(zhì).此題難度不大,注意掌握分類(lèi)討論結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用剪刀將形狀如圖(甲)所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點(diǎn).用這兩部分紙片可以拼成一些新圖形,例如圖(乙)中的Rt△BCE就是拼成的一個(gè)圖形.
(1)用這兩部分紙片除了可以拼成圖乙中的Rt△BCE外,還可以拼成一些四邊形.請(qǐng)你試一試,把拼好的四邊形分別畫(huà)在圖丙、圖丁的虛框內(nèi);
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長(zhǎng)分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個(gè)實(shí)數(shù)根,試求出原矩形紙片的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用剪刀將形狀如圖1所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點(diǎn).用這兩部分紙片可以拼成一些新圖形,例如圖2中的Rt△BCE就是拼成的一個(gè)圖形.
(1)用這兩部分紙片除了可以拼成圖2中的Rt△BCE外,還可以拼成一些四邊形.請(qǐng)你試一試,把拼好的四邊形分別畫(huà)在圖3、圖4的虛框內(nèi).
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設(shè)原矩形紙片中的邊AB和BC的長(zhǎng)分別為a厘米、b厘米,且a、b恰好是關(guān)于x的方程x2-(m-1)x+m+1=0的兩個(gè)實(shí)數(shù)根,試求出原矩形紙片的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1:△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.將△AOD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得△OBE,從而構(gòu)造出以AD、BC、
OC+OD的長(zhǎng)度為三邊長(zhǎng)的△BCE(如圖2).若△BOC的面積為1,則△BCE面積等于
2
2


如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
①在圖3中利用圖形變換畫(huà)出并指明以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形(保留作圖痕跡);
②若△ABC的面積為1,則以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•金華模擬)探究:如圖(1),在?ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,連接AC,EF.在圖中找一個(gè)與△FAE全等的三角形,并加以證明.
應(yīng)用:以?ABCD的四條邊為邊,在其形外分別作正方形,如圖(2),連接EF,GH,IJ,KL.若?ABCD的面積為6,則圖中陰影部分四個(gè)三角形的面積和為
12
12

推廣:以?ABCD的四條邊為矩形長(zhǎng)邊,在其形外分別作長(zhǎng)與寬之比為
3
矩形,如圖(3),連接EF,GH,IJ,KL.若圖中陰影部分四個(gè)三角形的面積和為12
3
,求?ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為
5
10
、
13
,求這個(gè)三角形的面積.小華同學(xué)在解答這道題時(shí),先畫(huà)一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
3.5
3.5

(2)若△DEF三邊的長(zhǎng)分別為
5
8
、
17
,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫(huà)出相應(yīng)的△DEF,并利用構(gòu)圖法求出它的面積為
3
3

(3)如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(4)如圖4,一個(gè)六邊形的花壇被分割成7個(gè)部分,其中正方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則六邊形花壇ABCDEF的面積是
110
110
m2

查看答案和解析>>

同步練習(xí)冊(cè)答案