【題目】同學(xué)們知道數(shù)學(xué)中的整體思想嗎?在解決某些問題時(shí),常常需要運(yùn)用整體的方式對(duì)問題進(jìn)行處理,如:整體思考、整體變形、把一個(gè)式子看作整體等,這樣可以使問題簡(jiǎn)化并迅速求解.試運(yùn)用整體的數(shù)學(xué)思想方法解決下列問題:

1)把下列各式分解因式:

2)①已知的值為 .

②已知那么 .

③已知的值.

【答案】1)①;②;(2)①1;②2;③5.

【解析】

1)①原式提取公因式即可;

②原式利用完全平方公式分解即可;

2)①原式提取公因式ab進(jìn)行因式分解,然后整體代入即可求值;

②已知等式利用平方差公式進(jìn)行因式分解,即可求出所求式子的值;

③原式利用完全平方公式變形,把已知等式代入計(jì)算即可求出值.

解:(1)①原式=;

②原式=

2)①∵,

∴原式=abab)=1

②∵,,

xy2;

③∵ab3,ab2,

∴原式=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),﹚,,﹚,交軸于點(diǎn),交軸于點(diǎn)

求反比例函數(shù)和一次函數(shù)的表達(dá)式;

連接,,求的面積;

根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,則在下列條件:①∠C=D AC=AD ③∠CBA=DBA BC=BD中任選一個(gè)能判定ABC≌△ABD的是( )

A. ①②③④ B. ②③④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過點(diǎn)和點(diǎn),對(duì)稱軸為直線

求該二次函數(shù)的關(guān)系式和頂點(diǎn)坐標(biāo);

結(jié)合圖象,解答下列問題:

①當(dāng)時(shí),求函數(shù)的取值范圍.

②當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)ECD邊上,將ADE沿AE對(duì)折得到AFE,延長(zhǎng)EFBC邊于點(diǎn)G,連結(jié)AG.給出結(jié)論:①△ABGAFG;②∠EAG45°;③∠AGB+AED135°.其中正確的結(jié)論有(

A.只有①B.①②C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖的轉(zhuǎn)盤被劃分成六個(gè)相同大小的扇形,并分別標(biāo)上1,23,45,6這六個(gè)數(shù)字,指針停在每個(gè)扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見解:

甲:如果指針前三次都停在了3號(hào)扇形,下次就一定不會(huì)停在3號(hào)扇形;

乙:只要指針連續(xù)轉(zhuǎn)六次,一定會(huì)有一次停在6號(hào)扇形;

丙:指針停在奇數(shù)號(hào)扇形的概率與停在偶數(shù)號(hào)扇形的概率相等;

。哼\(yùn)氣好的時(shí)候,只要在轉(zhuǎn)動(dòng)前默默想好讓指針停在6號(hào)扇形,指針停在6號(hào)扇形的可能性就會(huì)加大。

其中,你認(rèn)為正確的見解有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC,過點(diǎn)C在△ABC外作直線MNAMNN于點(diǎn)M,BNMNN

1)求證:△AMC≌△CNB

2)求證:MNAM+BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】冬天,小芳給自己家剛剛裝滿水且顯示溫度為的太陽能熱水器里的水加熱.她每過一段時(shí)間去觀察一下顯示溫度,并記錄如下:

時(shí)間(分鐘)

0

5

10

15

20

……

顯示溫度(

16

17

18

19

20

……

1)請(qǐng)直接寫出顯示溫度()與加熱時(shí)間()之間的函數(shù)關(guān)系式;

2)如果她給熱水器設(shè)定的最高溫度為,問:要加熱多長(zhǎng)時(shí)間才能達(dá)到設(shè)定的最高溫度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下面圖形,解答問題:

1)在△ABC中,AB=AC,∠BAC=100°,DEFG分別是邊AB、AC的垂直平分線(如圖1),求∠DAG的度數(shù)?

2)在(1)中,若去掉“AB=AC”的條件,其余條件不變(如圖2),還能求出∠DAG的度數(shù)嗎?若能,請(qǐng)求出∠DAG的度數(shù);若不能,請(qǐng)說明理由;

3)在(圖2)的情況下試探索△ADG的周長(zhǎng)與BC長(zhǎng)的關(guān)系?

查看答案和解析>>

同步練習(xí)冊(cè)答案