△ABC中,AC=8,BC=6,在△ABE中,DE為AB邊上的高,DE=12,SABE=60,求∠C的度數(shù).
90°

試題分析:先根據(jù)三角形的面積公式求得AB的長,再根據(jù)勾股定理的逆定理求解即可.
∵在△ABE中,S△ABE
∴AB=10
∵在△ABC中,,

∴△ABC是直角三角形
∴∠C=90°.
點評:解題的關(guān)鍵是熟練掌握勾股定理的逆定理:若一個三角形的兩邊長的平方和等于第三邊的平方,則這個三角形的直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,由7個形狀、大小完全相同的正六邊形組成網(wǎng)格,正六邊形的頂點稱為格點。已知每個正六邊形的邊長為1,△ABC的頂點都在格點上,則是       。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若x=1是一元二次方程的根,則判別式△=b2-4ac和完全平方式M=的關(guān)系是(     )
A.△=MB.△>MC.△<MD.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC,請你作出△ABC的高CD,中線BF,角平分線AE(不寫畫法).
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個三角形最多有a個銳角,b個直角,c個鈍角,則a+b+c=       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,在△ABC中,∠BAC=90º, AB=AC,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作正方形ADEF.連接CF.

(1)如圖1,當(dāng)點D在線段BC上時,求證:①CF=BD;②CF⊥BD;
(2)如圖2,當(dāng)點D在線段BC的延長線上時,其它條件不變,線段CF與BD的上述關(guān)系是否還成立?請直接寫出結(jié)論即可(不必證明);
(3)如圖3,當(dāng)點D在線段BC的反向延長線上,且點A、F在直線BC的兩側(cè),其它條件不變,線段CF與BD的上述關(guān)系是否還成立?若成立,請證明你的結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知∠C=90°,∠1=∠2,若BC=10,BD=6,則點D到邊AB的距離為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠A+∠ABC+∠C+∠D+∠E+∠F=          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列長度的4根木條中,能與3cm和8cm長的2根木條首尾依次相接圍成一個三角形的是
A.4cm B.5cmC.9cmD.13cm

查看答案和解析>>

同步練習(xí)冊答案