三角形的高(或中線,或角平分線)是


  1. A.
    線段
  2. B.
    射線
  3. C.
    直線
  4. D.
    以上三種都不是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有以下四個(gè)說法:①兩邊和其中一邊上的中線(或第三邊上的中線)對(duì)應(yīng)相等的兩個(gè)三角形全等;②兩角和其中一角的角平分線(或第三角的角平分線)對(duì)應(yīng)相等的兩個(gè)三角形全等;③兩邊和其中一邊上的高(或第三邊上的高)對(duì)應(yīng)相等的兩個(gè)三角形全等;④劉徽計(jì)算過π的值,認(rèn)為其為
10
.其中正確的有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,過△ABC頂點(diǎn)A作BC邊上的高AD和中線AE,點(diǎn)D是垂足,點(diǎn)E是BC中點(diǎn),規(guī)定λA=
DEBE
.特別地,當(dāng)D、E重合時(shí),規(guī)定λA=0.另外對(duì)λB、λC也作類似規(guī)定.

(1)①當(dāng)△ABC中,AB=AC時(shí),則λA=
0
0
;②當(dāng)△ABC中,λAB=0時(shí),則△ABC的形狀是
等邊三角形
等邊三角形
;
(2)如圖2,在Rt△ABC中,∠A=30°,求λA和λC的值;
(3)如圖3,正方形網(wǎng)格中,格點(diǎn)△ABC的λA=
2
2

(4)判斷下列三種說法的正誤(正確的打“√”錯(cuò)誤的打“×”)
①若△ABC中λA<1,則△ABC為銳角三角形
×
×
;
②若△ABC中λA=1,則△ABC為直角三角形
;
③若△ABC中λA>1,則△ABC為鈍角三角形
;
(5)通過本題解答,同學(xué)們應(yīng)該有這樣的認(rèn)識(shí):一個(gè)無論多么陌生、多么綜合的問題,其實(shí)都來自于書本已學(xué)的基礎(chǔ)知識(shí).因此,我們今后應(yīng)重視基礎(chǔ)知識(shí)的學(xué)習(xí);同時(shí)在解決問題時(shí)或者解決問題后,應(yīng)該思考該問題的本質(zhì)和目的:①鞏固哪些基礎(chǔ)知識(shí);②培養(yǎng)我們哪些方面能力;③向我們滲透哪些數(shù)學(xué)思想.本題之所以是一道綜合題,就是因?yàn)樯婕暗降闹R(shí)點(diǎn)多、面廣.下面就請(qǐng)你談?wù)劚绢}中所用到的、已學(xué)過的性質(zhì)、定理、公理或判定等.(至少列舉兩條)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法:
(1)等腰三角形的高、中線、角平分線互相重合;
(2)等腰三角形的兩腰上的中線長(zhǎng)相等;
(3)等腰三角形的腰一定大于其腰上的高;
(4)等腰三角形的一邊長(zhǎng)為8,一邊長(zhǎng)為16,那么它的周長(zhǎng)是32或40.
其中不正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法:(1)等腰三角形的高、中線、角平分線互相重合;(2)等腰三角形的兩腰上的中線長(zhǎng)相等;(3)等腰三角形的一邊長(zhǎng)為4,一邊長(zhǎng)為16,那么它的周長(zhǎng)是32或40.其中不正確的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

三角形的高(中線或角平分線)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案