【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E.
(1)求證:DE=AB.
(2)以D為圓心, DE為半徑作圓弧交AD于點(diǎn)G.若BF=FC=1,試求的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由矩形的性質(zhì)得出∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,得出∠EAD=∠AFB,由AAS證明△ADE≌△FAB,得出對應(yīng)邊相等即可;
(2)連接DF,先證明△DCF≌△ABF,得出DF=AF,再證明△ADF是等邊三角形,得出∠DAE=60°,
∠ADE=30°,由AE=BF=1,根據(jù)三角函數(shù)得出DE,由弧長公式即可求出的長.
試題解析:(1)∵四邊形ABCD是矩形,
∴∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,
∴∠EAD=∠AFB,
∵DE⊥AF,
∴∠AED=90°=∠B,
∵AF=DA
∴△ADE≌△FAB(AAS),
∴DE=AB;
(2)連接DF,如圖所示:
在△DCF和△ABF中,
DC=AB∠C=∠BFC=BF,
∴△DCF≌△ABF(SAS),
∴DF=AF,
∵AF=AD,
∴DF=AF=AD,
∴△ADF是等邊三角形,
∴∠DAE=60°,
∵DE⊥AF,
∴∠AED=90°,
∴∠ADE=30°,
∵△ADE≌△FAB,
∴AE=BF=1,
∴DE=AE=,
∴的長=30×π×3180=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是 ;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點(diǎn)作一個70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°
(1)將△ADF繞著點(diǎn)A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品原價(jià)800元,連續(xù)兩次降價(jià)a%后售價(jià)為578元,下列所列方程正確的是( )
A. 800(1+a%)2=578 B. 800(1-a%)2="578" C. 800(1-2a%)=578 D. 800(1-a2%)=578
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年師大附中秋季運(yùn)動會,為了準(zhǔn)備入場式,初一年級某班買了兩種布料共28米,花了88元.其中黃布料每米3元,紅布料每米3.5元,該班兩種布料各買了多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com