【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴AB∥CD,AC⊥BD,

∴AE∥CD,∠AOB=90°,

∵DE⊥BD,即∠EDB=90°,

∴∠AOB=∠EDB,

∴DE∥AC,

∴四邊形ACDE是平行四邊形


(2)解:∵四邊形ABCD是菱形,AC=8,BD=6,

∴AO=4,DO=3,AD=CD=5,

∵四邊形ACDE是平行四邊形,

∴AE=CD=5,DE=AC=8,

∴△ADE的周長為AD+AE+DE=5+5+8=18


【解析】(1)根據(jù)平行四邊形的判定證明即可;(2)利用平行四邊形的性質(zhì)得出平行四邊形的周長即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)解方程: =
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,D,E分別為AB,BC中點,F(xiàn)為AC上一點,且∠AFE=∠A,DM∥EF交AC于點M.
(1)點G在BE上,且∠BDG=∠C,求證:DGCF=DMEG;
(2)在圖中,取CE上一點H,使∠CFH=∠B,若BG=1,求EH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O,點E是CD的中點,△ABD的周長為16cm,則△DOE的周長是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).

(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標為(4,0).

(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,若∠BAC=80°,∠C=50°,取AC中點P,連接PO并延長交BC于點M,連接AM,則∠BAM=(
A.45°
B.30°
C.50°
D.55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若點(﹣2,y1)和(,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是 (填入正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案