【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是y軸正半軸上的一個(gè)定點(diǎn),點(diǎn)B是反比例函數(shù)y=(k為常數(shù))在第一象限內(nèi)圖象上的一個(gè)動點(diǎn).當(dāng)點(diǎn)B的縱坐標(biāo)逐漸增大時(shí),△OAB的面積( 。
A. 逐漸減小 B. 逐漸增大 C. 先增大后減小 D. 不變
【答案】A
【解析】先根據(jù)函數(shù)圖象判斷出函數(shù)的增減性,再由三角形的面積公式即可得出結(jié)論.
解:∵反比例函數(shù)y=(k為常數(shù))的圖象在第一象限,
∴y隨x的增大而減。
∵點(diǎn)A是y軸正半軸上的一個(gè)定點(diǎn),
∴OA是定值.
∵點(diǎn)B的縱坐標(biāo)逐漸增大,
∴其橫坐標(biāo)逐漸減小,即△OAB的底邊OA一定,高逐漸減小,
∴△OAB的面積逐漸減。
故選A.
“點(diǎn)睛”本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),熟知反比例函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=15,AD=12.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問題,請你幫助解決.
(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過點(diǎn)A(如圖2)求FB的長度
(2)在(1)的條件下,小紅想用△EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計(jì))請你通過計(jì)算說服小紅。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)運(yùn)算程序的示意圖,若開始輸入的x值為81,我們看到第一次輸出的結(jié)果為27,第二次輸出的結(jié)果為9,…,第2017次輸出的結(jié)果為( )
A.1
B.3
C.9
D.27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC , 使∠BOC=135°,將一個(gè)含45°角的直角三角尺的一個(gè)頂點(diǎn)放在點(diǎn)O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,如圖1所示,此時(shí)∠BOM=;在圖1中,OM是否平分∠CON?請說明理由;
(2)緊接著將圖2中的三角板繞點(diǎn)O逆時(shí)針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;
(3)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時(shí),直線ON恰好平分銳角∠AOC,則t的值為(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上A、B兩點(diǎn)間的距離是指( )
A.經(jīng)過A,B兩點(diǎn)的直線
B.射線AB
C.A,B兩點(diǎn)間的線段
D.A,B兩點(diǎn)間線段長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
【類比引申】
(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
【聯(lián)想拓展】
(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,AB是⊙O的弦,點(diǎn)E是弧AB的中點(diǎn),連結(jié)OE,交AB于點(diǎn)D,再連結(jié)CD,若tan∠CDB=,則AB與DE的數(shù)量關(guān)系是( )
A. AB=2DE B. AB=3DE C. AB=4DE D. 2AB=3DE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com