【題目】定義:如圖1,拋物線)與軸交于,兩點(diǎn),點(diǎn)在該拋物線上(點(diǎn)與,兩點(diǎn)不重合),如果的三邊滿足,則稱點(diǎn)為拋物線)的勾股點(diǎn).

1)求證:點(diǎn)是拋物線的勾股點(diǎn).

2)如圖2,已知拋物線)與軸交于,兩點(diǎn),點(diǎn)是拋物線的勾股點(diǎn),求拋物線的函數(shù)表達(dá)式.

【答案】(1)見解析;(2y=

【解析】

1)先解方程x2-1=0得拋物線與x軸的交點(diǎn)A、B的坐標(biāo)為(-10),B1,0),利用兩點(diǎn)間的距離公式可得到AM2=2,BM2=2AB2=22=4,則AM2+BM2=AB2,根據(jù)題中定義可判斷點(diǎn)M0,-1)是拋物線y=x2-1的勾股點(diǎn);

2)作PHABH,如圖2,先利用P點(diǎn)坐標(biāo)求出∠PAH=60°,再根據(jù)點(diǎn)P1, )是拋物線C的勾股點(diǎn)得到∠APB=90°,所以∠PBA=30°,然后計(jì)算出BH得到B點(diǎn)坐標(biāo),于是可利用待定系數(shù)法求拋物線C的解析式.

1)如圖所示:令得,,解得

,

,,,

∴點(diǎn)是拋物線的勾股點(diǎn).

2)拋物線過原點(diǎn),即點(diǎn)

如圖,作軸于點(diǎn)

∵點(diǎn)的坐標(biāo)為

,,

∵點(diǎn)是拋物線的勾股點(diǎn)

是直角三角形

設(shè)

∴點(diǎn)坐標(biāo)為

設(shè)

將點(diǎn)代入得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),點(diǎn)FBC邊上,連接DE、DF、EF,則添加下列哪一個(gè)條件后,仍無法判斷△FCE△EDF全等( )

A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系中,直線y=x+2x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與直線y=x交于點(diǎn)C


1)求A,B,C三點(diǎn)的坐標(biāo);
2)求△AOC的面積;
3)已知點(diǎn)Px軸正半軸上的一點(diǎn),若△COP是等腰三角形,直接寫點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對(duì)稱軸為直線,且過點(diǎn),有下列結(jié)論:

;②;③;④;⑤,其中正確的結(jié)論有( )

A.①③⑤B.①②⑤C.①④⑤D.③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6a≠0)相交于A)和B46),點(diǎn)P是線段AB上異于AB的動(dòng)點(diǎn),過點(diǎn)PPCx軸于點(diǎn)D,交拋物線于點(diǎn)C

1)求拋物線的解析式;

2)當(dāng)C為拋物線頂點(diǎn)的時(shí)候,求的面積.

3)是否存在質(zhì)疑的點(diǎn)P,使的面積有最大值,若存在,求出這個(gè)最大值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),的坐標(biāo)分別為,拋物線的頂點(diǎn)在線段上運(yùn)動(dòng)(拋物線隨頂點(diǎn)一起平移),與軸交于、兩點(diǎn)(的左側(cè)),點(diǎn)的橫坐標(biāo)最小值為-6,則點(diǎn)的橫坐標(biāo)最大值為(

A.-3B.1C.5D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AEBD于點(diǎn)ECF平分∠BCD,交EA的延長線于點(diǎn)F,且BC=4,CD=2,給出下列結(jié)論:①∠BAE=CAD②∠DBC=30°;AE=AF=,其中正確結(jié)論的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB的長為10,弦AC的長為5,∠ACB的平分線交O于點(diǎn)D.

(1)∠ADC的度數(shù);

(2)求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖中的A型、B型、C型矩形紙片分別放在3個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這3個(gè)盒子裝入一只不透明的袋子中.

(1)攪勻后從中摸出1個(gè)盒子,求摸出的盒子中是型矩形紙片的概率;

(2)攪勻后先從中摸出1個(gè)盒子(不放回),再從余下的兩個(gè)盒子中摸出一個(gè)盒子,求2次摸出的盒子的紙片能拼成一個(gè)新矩形的概率(不重疊無縫隙拼接).

查看答案和解析>>

同步練習(xí)冊(cè)答案