先觀察下列等式,再回答問題:

②.

根據(jù)上面三個等式提供的信息,請猜想的結(jié)果為    ,請按照上各等式反映的規(guī)律,寫出用n(n為正整數(shù))表示的等式   
【答案】分析:首先要理解所給出的三個例子,找出其中的規(guī)律,即,即代入數(shù)據(jù)即可得到結(jié)果.
解答:解:根據(jù)上述的三個等式,我們可以得到的規(guī)律為律,;所以息,=;
點評:本題為一般的規(guī)律性數(shù)學等式問題,找出其中規(guī)律,問題迎刃而解,主要考查學生的觀察能力和對數(shù)字的敏感性.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

先觀察下列等式,再回答下列問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
;
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
;
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)請你根據(jù)上面三個等式提供的信息,猜想
1+
1
42
+
1
52
的結(jié)果,并驗證;
(2)請你按照上面各等式反映的規(guī)律,試寫出用含n的式子表示的等式(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先觀察下列等式,再回答下列問題①
1 +
1
12
+
1
22
=1+
1
1
-
1
2
=1
1
2
;②
1+
1
22
+
1
32
=1+
1
2
-
1
3
=1
1
6
;③
1+
1
32
+
1
42
=1+
1
3
-
1
4
=1
1
12
,請你根據(jù)上面三個等式提供的信息,猜想
1 +
1
92
+
1
102
的結(jié)果為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先觀察下列等式,再完成題后問題:
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
1
4×5
=
1
4
-
1
5

(1)請你猜想:
1
2010×2011
=
 

(2)若a、b為有理數(shù),且|a-1|+(ab-2)2=0,求:
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2009)(b+2009)
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先觀察下列等式,再回答問題
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
;
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)根據(jù)上面三個等式提供的信息,請猜想
1+
1
92
+
1
102
=
1
1
90
1
1
90

(2)請按照上面各等式反映的規(guī)律,試寫出用n(n為正整數(shù))表示的等式,并加以驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先觀察下列等式,再回答問題:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根據(jù)上面三個等式提供的信息,請猜想
1+
1
42
+
1
52
的結(jié)果.

查看答案和解析>>

同步練習冊答案