【題目】已知二次函數(shù)y=x2+x的圖象,如圖所示.

1)在同一直角坐標(biāo)系中用描點(diǎn)法畫出一次函數(shù)y=x+的圖象,觀察圖象寫出自變量x取值在什么范圍時(shí),一次函數(shù)的值小于二次函數(shù)的值;

2)如圖,點(diǎn)P是坐標(biāo)平面上的一點(diǎn),并在網(wǎng)格的格點(diǎn)上,請選擇一種適當(dāng)?shù)钠揭品椒,使平移后二次函?shù)圖象的頂點(diǎn)落在P點(diǎn)上,寫出平移后二次函數(shù)圖象的函數(shù)表達(dá)式,并判斷點(diǎn)P是否在函數(shù)y=x+的圖象上,請說明理由.

【答案】1)當(dāng)x1.5x1時(shí),一次函數(shù)的值小于二次函數(shù)的值;(2)點(diǎn)P在直線y=x+的函數(shù)圖象上.

【解析】試題分析

1由題意和圖可知,小正方形的邊長為0.5個(gè)單位長度,這樣先求得直線上任意兩點(diǎn)的坐標(biāo),根據(jù)坐標(biāo)在圖中描出這兩個(gè)點(diǎn),然后畫出過這兩點(diǎn)的直線即可得到直線y=x+的函數(shù)圖象,然后找出一次函數(shù)圖象位于拋物線下方部分x的取值范圍即可;

(2)先依據(jù)拋物線的頂點(diǎn)坐標(biāo)和點(diǎn)P的坐標(biāo),確定出拋物線移動(dòng)的方向和距離,然后依據(jù)拋物線的頂點(diǎn)式寫出拋物線的解析式即可,將點(diǎn)P的坐標(biāo)代入函數(shù)解析式,如果點(diǎn)P的坐標(biāo)符合函數(shù)解析式,則點(diǎn)P在直線上,否則點(diǎn)P不在直線上.

試題解析

1x=0代入y=x+y=,將x=1代入得:y=2,

直線y=x+經(jīng)過點(diǎn)(0, ),(1,2).

由拋物線y=x2+xx軸左側(cè)交點(diǎn)的位置可知,圖中小正方形的邊長為0.5個(gè)單位長度,由此可畫出直線y=x+的圖象如下圖所示:

由函數(shù)圖象可知:當(dāng)x﹣1.5x1時(shí),一次函數(shù)的值小于二次函數(shù)的值.

2)由拋物線y=x2+x=(x+)2-可知,拋物線的頂點(diǎn)坐標(biāo)為(, ),點(diǎn)P的坐標(biāo)為(-1,1),

先將拋物線向上平移個(gè)單位,再向左平移個(gè)單位,即可使平移后的拋物線頂點(diǎn)落在點(diǎn)P1,1)處.

平移后的二次函數(shù)的表達(dá)式為y=x+12+1,即y=x2+2x+2;

點(diǎn)Py=x+的函數(shù)圖象上.理由如下

x=1代入y=x+y=1,

點(diǎn)P的坐標(biāo)符合直線的解析式.

點(diǎn)P在直線y=x+的函數(shù)圖象上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文教店購進(jìn)一批鋼筆,按進(jìn)價(jià)提高40%后標(biāo)價(jià),為了增加銷量,文教店決定按標(biāo)價(jià)打八折出售,這時(shí)每支鋼筆的售價(jià)為28元.

1)求每支鋼筆的進(jìn)價(jià)為多少元;

2)該文教店賣出這批鋼筆的一半后,決定將剩下的鋼筆以每380元的價(jià)格出售,很快銷售完畢,銷售這批鋼筆文教店共獲利2800元,求該文教店共購進(jìn)這批鋼筆多少支?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育活動(dòng)的情況,學(xué)校設(shè)計(jì)了你最喜歡的體育活動(dòng)是哪一項(xiàng)(僅限一項(xiàng))的調(diào)查問卷.該校對學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中信息解答以下問題:

1)該校對多少名學(xué)生進(jìn)行了抽樣調(diào)查?

2)①請補(bǔ)全圖1并標(biāo)上數(shù)據(jù),

、趫D2x=__________% ;

3)若該校共有學(xué)生900人,請你估計(jì)該校最喜歡跳繩項(xiàng)目的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(﹣4,﹣3),將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到OA′,則點(diǎn)A′的坐標(biāo)是( 。

A. (﹣4,3) B. (﹣3,4) C. (3,﹣4) D. (4,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB//ED, BF平分∠ABC, DF平分∠EDC.

(1)若∠ABC =130°,∠EDC=110°,求∠C的度數(shù)和∠BFD的度數(shù);

(2)請直接寫出∠BFD與∠C的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蔬菜經(jīng)營戶老王,近兩天經(jīng)營的是青菜和西蘭花.

1)昨天的青菜和西蘭花的進(jìn)價(jià)和售價(jià)如下表,老王用600元批發(fā)青菜和西蘭花共200斤,老王昨天青菜和西蘭花各進(jìn)了多少斤?

青菜

西蘭花

進(jìn)價(jià)(元/斤)

2.6

3.4

售價(jià)(元/斤)

3.6

4.6

2)今天因進(jìn)價(jià)不變,老王仍用600元批發(fā)青菜和西蘭花共200斤,但在運(yùn)輸中青菜損壞了10%,而西蘭花沒有損壞仍按昨天的售價(jià)銷售,要想當(dāng)天售完后所賺的錢不少于昨天所賺的錢,請你幫老王計(jì)算,青菜每斤售價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,點(diǎn)OAC上,以OA為半徑的OAB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6,BC=8,OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與y軸交于點(diǎn)C0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣20),拋物線的對稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E

1)求拋物線的解析式;

2)若直線BC的函數(shù)解析式為y’=kx+b,求當(dāng)滿足y<y’時(shí),自變量x的取值范圍.

3)平行于DE的一條動(dòng)直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元一次方程的根是一元一次不等式組的解,則稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.

1)在方程①3x-1=0;②x+1=0;③x-3x+1=-5中,不等式組關(guān)聯(lián)方程是______(填序號(hào)).

2)若不等式組的一個(gè)關(guān)聯(lián)方程的根是整數(shù),則這個(gè)關(guān)聯(lián)方程可以是______(寫出一個(gè)即可).

3)若方程9-x=2x,3+x=2x+)都是關(guān)于x的不等式組的關(guān)聯(lián)方程,試求出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案