【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)請(qǐng)直接寫出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】
(1)

解:當(dāng)y=﹣x2﹣2x+3中y=0時(shí),有﹣x2﹣2x+3=0,

解得:x1=﹣3,x2=1,

∵A在B的左側(cè),

∴A(﹣3,0),B(1,0).

當(dāng)y=﹣x2﹣2x+3中x=0時(shí),則y=3,

∴C(0,3).

∵y=﹣x2﹣2x+3=﹣(x+1)2+4,

∴頂點(diǎn)D(﹣1,4)


(2)

解:作點(diǎn)C關(guān)于x軸對(duì)稱的點(diǎn)C′,連接C′D交x軸于點(diǎn)E,此時(shí)△CDE的周長(zhǎng)最小,如圖1所示.

∵C(0,3),

∴C′(0,﹣3).

設(shè)直線C′D的解析式為y=kx+b,

則有 ,解得: ,

∴直線C′D的解析式為y=﹣7x﹣3,

當(dāng)y=﹣7x﹣3中y=0時(shí),x=﹣

∴當(dāng)△CDE的周長(zhǎng)最小,點(diǎn)E的坐標(biāo)為(﹣ ,0)


(3)

解:設(shè)直線AC的解析式為y=ax+c,

則有 ,解得: ,

∴直線AC的解析式為y=x+3.

假設(shè)存在,設(shè)點(diǎn)F(m,m+3),

△AFP為等腰直角三角形分三種情況(如圖2所示):

①當(dāng)∠PAF=90°時(shí),P(m,﹣m﹣3),

∵點(diǎn)P在拋物線y=﹣x2﹣2x+3上,

∴﹣m﹣3=﹣m2﹣2m+3,

解得:m1=﹣3(舍去),m2=2,

此時(shí)點(diǎn)P的坐標(biāo)為(2,﹣5);

②當(dāng)∠AFP=90°時(shí),P(2m+3,0)

∵點(diǎn)P在拋物線y=﹣x2﹣2x+3上,

∴0=﹣(2m+3)2﹣2×(2m+3)+3,

解得:m3=﹣3(舍去),m4=﹣1,

此時(shí)點(diǎn)P的坐標(biāo)為(1,0);

③當(dāng)∠APF=90°時(shí),P(m,0),

∵點(diǎn)P在拋物線y=﹣x2﹣2x+3上,

∴0=﹣m2﹣2m+3,

解得:m5=﹣3(舍去),m6=1,

此時(shí)點(diǎn)P的坐標(biāo)為(1,0).

綜上可知:在拋物線上存在點(diǎn)P,使得△AFP為等腰直角三角形,點(diǎn)P的坐標(biāo)為(2,﹣5)或(1,0)


【解析】(1)令拋物線解析式中y=0,解關(guān)于x的一元二次方程即可得出點(diǎn)A、B的坐標(biāo),再令拋物線解析式中x=0求出y值即可得出點(diǎn)C坐標(biāo),利用配方法將拋物線解析式配方即可找出頂點(diǎn)D的坐標(biāo);(2)作點(diǎn)C關(guān)于x軸對(duì)稱的點(diǎn)C′,連接C′D交x軸于點(diǎn)E,此時(shí)△CDE的周長(zhǎng)最小,由點(diǎn)C的坐標(biāo)可找出點(diǎn)C′的坐標(biāo),根據(jù)點(diǎn)C′、D的坐標(biāo)利用待定系數(shù)法即可求出直線C′D的解析式,令其y=0求出x值,即可得出點(diǎn)E的坐標(biāo);(3)根據(jù)點(diǎn)A、C的坐標(biāo)利用待定系數(shù)法求出直線AC的解析式,假設(shè)存在,設(shè)點(diǎn)F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三種情況考慮.根據(jù)等腰直角三角形的性質(zhì)結(jié)合點(diǎn)A、F點(diǎn)的坐標(biāo)找出點(diǎn)P的坐標(biāo),將其代入拋物線解析式中即可得出關(guān)于m的一元二次方程,解方程求出m值,再代入點(diǎn)P坐標(biāo)中即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中不正確的是(

A.同一平面內(nèi),不相交的兩條直線叫做平行線

B.在同一平面內(nèi),過一點(diǎn)有且只有一條直線與己知直線垂直

C.如果兩個(gè)三角形,兩條對(duì)應(yīng)邊及其夾角相等,那么這兩個(gè)三角形全等

D.角是軸對(duì)稱圖形,它的角平分線是對(duì)稱軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商行計(jì)劃購進(jìn)A、B兩種水果共200箱,這兩種水果的進(jìn)價(jià)、售價(jià)如下表所示:

價(jià)格
類型

進(jìn)價(jià)(元/箱)

售價(jià)(元/箱)

A

60

70

B

40

55


(1)若該商行進(jìn)貸款為1萬元,則兩種水果各購進(jìn)多少箱?
(2)若商行規(guī)定A種水果進(jìn)貨箱數(shù)不低于B種水果進(jìn)貨箱數(shù)的 ,應(yīng)怎樣進(jìn)貨才能使這批水果售完后商行獲利最多?此時(shí)利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AMCN,點(diǎn)B為平面內(nèi)一點(diǎn),ABBCB

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;

(2)如圖2,過點(diǎn)BBDAM于點(diǎn)D,試說明:∠ABD=C;

(3)如圖3,在(2)問的條件下,點(diǎn)EDM上,且BE平分∠DBC,試說明∠ABE=AEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題: 學(xué)習(xí)了二次根式后,你會(huì)發(fā)現(xiàn)一些含有根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2 =1+2, 我們來進(jìn)行以下的探索:

設(shè)a+b=m+n2其中a,b,mn都是正整數(shù)),則有a+b=m2+2n2+2mn,a=m+2n2 , b=2mn, 這樣就得出了把類似a+b的式子化為平方式的方法

請(qǐng)仿照上述方法探索并解決下列問題:

1)當(dāng)a,b,m,n都為正整數(shù)時(shí),若ab=mn2 用含m,n的式子分別表示a,b,得a=________,b=________;

2)利用上述方法,找一組正整數(shù)a,bm,n填空:________=_________2

3a4=mn2a,m,n都為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kxb(k≠0)的圖象由直線y=3x向下平移得到,且過點(diǎn)A(12)

(1)求一次函數(shù)的解析式;

(2)求直線y=kxbx軸的交點(diǎn)B的坐標(biāo);

(3)設(shè)坐標(biāo)原點(diǎn)為O,一條直線過點(diǎn)B,且與兩條坐標(biāo)軸圍成的三角形的面積是,這條直線與y軸交于點(diǎn)C,求直線AC對(duì)應(yīng)的一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖4所示,所有正方形的中心均在坐標(biāo)原點(diǎn),且每條邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8 …,頂點(diǎn)依次用表示,則頂點(diǎn)A55的坐標(biāo)是( ).

A. (13,13) B. (-13,-13) C. (14,14) D. (-14,-14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣ x2﹣3x﹣ ,設(shè)自變量的值分別為x1 , x2 , x3 , 且﹣3<x1<x2<x3 , 則對(duì)應(yīng)的函數(shù)值y1 , y2 , y3的大小關(guān)系是( )
A.y1>y2>y3
B.y1<y2<y3
C.y2>y3>y1
D.y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,直徑AC=6,對(duì)角線AC、BD交于E點(diǎn),且AB=BD,EC=1,則AD的長(zhǎng)為(
A.
B.
C.
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案