已知一次函數(shù)y=x+b的圖象與x軸,y軸交于點A、B.
(1)若將此函數(shù)圖象沿x軸向右平移2個單位后經(jīng)過原點,則b=     ;
(2)若函數(shù)y1=x+b圖象與一次函數(shù)y2=kx+4的圖象關(guān)于y軸對稱,求k、b的值;
(3)當b>0時,函數(shù)y1=x+b圖象繞點B逆時針旋轉(zhuǎn)n°(0°<n°<180°)后,對應的函數(shù)關(guān)系式為y=-x+b,求n的值.

(1)2;(2)-1,4;(3)75.

解析試題分析:(1)先根據(jù)平移的規(guī)律求出y=x+b的圖象沿x軸向右平移2個單位后的解析式,再將原點的坐標代入即可求解;
(2)先求出y2=kx+4圖象與y軸交點,則此交點在函數(shù)y=x+b圖象上,求出b=4.再求出y1=x+4與x軸的交點坐標為(-4,0),則y2=kx-4的圖象經(jīng)過點(4,0),即可求出k=-1;
(3)先求出y1=x+b圖象與y軸的交點B,與x軸的交點A的坐標,得出AO=BO=b(b>0),則∠ABC=45°,然后在直角△AOC中利用正切函數(shù)的定義求出∠ACB=60°,再根據(jù)三角形內(nèi)角和定理即可求出n的值.
(1)將y=x+b的圖象沿x軸向右平移2個單位后得到y(tǒng)=x-2+b,
由題意,得0=0-2+b,
解得b=2.
(2)∵當x=0時,y=4,
∴y2=kx+4圖象與y軸交于點(0,4).
(0,4)關(guān)于y軸對稱點就是本身,
∴(0,4)在函數(shù)y=x+b圖象上.
∴b=4. 
∴一次函數(shù)y1=x+4,它與x軸的交點坐標為(-4,0). 
∵y2=kx-4的圖象與y1=x+4的圖象關(guān)于y軸對稱,
∴y2=kx-4的圖象經(jīng)過點(4,0),則0=4k+4,
∴k=-1;

(3)∵當x=0時,y1=b,
∴y1=x+b圖象與y軸交于點B(0,b).
∵當y1=0時,x=-b,
∴y1=x+b圖象與x軸交于點A(-b,0).
如圖,∵AO=BO=b(b>0),∴∠ABC=45°.
∵當y3=0時,x=,
∴y3=-x+b圖象與x軸交于點C(,0).
如圖,∵CO=
∴tan∠ACB==,
∴∠ACB=60°.
∴n°=180°-∠ACB-∠ABC=75°.
即n的值為75.
考點:一次函數(shù)圖象與幾何變換.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

已知某工廠計劃用庫存的302m3木料為某學校生產(chǎn)500套桌椅,供該校1250名學生使用,該廠生產(chǎn)的桌椅分為A,B兩種型號,有關(guān)數(shù)據(jù)如下:

桌椅型號
一套桌椅所坐學生人數(shù)(單位:人)
生產(chǎn)一套桌椅所需木材(單位:m3
一套桌椅的生產(chǎn)成本(單位:元)
一套桌椅的運費(單位:元)
A
2
0.5
100
2
B
3
0.7
120
4
 
設生產(chǎn)A型桌椅x(套),生產(chǎn)全部桌椅并運往該校的總費用(總費用=生產(chǎn)成本+運費)為y元.
(1)求y與x之間的關(guān)系式,并指出x的取值范圍;
(2)當總費用y最小時,求相應的x值及此時y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在購買某場足球賽門票時,設購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:
方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;
(總費用=廣告贊助費+門票費)
方案二:購買門票方式如圖所示.
解答下列問題:
(1)方案一中,y與x的函數(shù)關(guān)系式為     ;
方案二中,當0≤x≤100時,y與x的函數(shù)關(guān)系式為     
當x>100時,y與x的函數(shù)關(guān)系式為        ;
(2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最省?請說明理由;
(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58000元,求甲、乙兩單位各購買門票多少張.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車從甲地出發(fā),到達乙地后立即原路返回甲地,途中休息了一段時間。假設小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km。設小明出發(fā)xh后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車在平路上的速度為       km/h;他途中休息了        h;
(2)求線段AB,BC所表示的y與之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

溫州享有“中國筆都”之稱,其產(chǎn)品暢銷全球,某制筆企業(yè)欲將n件產(chǎn)品運往A,B,C三地銷售,要求運往C地的件數(shù)是運往A地件數(shù)的2倍,各地的運費如圖所示.設安排x件產(chǎn)品運往A地.
(1)當n=200時,
①根據(jù)信息填表:

 
A地
B地
C地
合計
產(chǎn)品件數(shù)(件)
x
 
2x
200
運費(元)
30x
  
 
 
 
②若運往B地的件數(shù)不多于運往C地的件數(shù),總運費不超過4000元,則有哪幾種運輸方案?
(2)若總運費為5800元,求n的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,將□ABCD置于直角坐標系中,其中BC邊在x軸上(B在C的左邊),點D坐標為(0,4),直線MN:沿著x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被□ABCD截得的線段長度為m,平移時間為t,m與t的函數(shù)圖像如圖②所示.
(1)填空:點C的坐標為   ;
在平移過程中,該直線先經(jīng)過B、D中的哪一點?   ;(填“B”或“D”)
(2)點B的坐標為   ,n=   ,a=   ;
(3)求圖②中線段EF的解析式;
(4)t為何值時,該直線平分□ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在一次運輸任務中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回.設汽車從甲地出發(fā)x(h)時,汽車與甲地的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.
(1)這輛汽車的往、返速度是否相同?請說明理由;
(2)寫出返程中y與x之間的函數(shù)表達式;并指出其中自變量的取值范圍.
(3)求這輛汽車從甲地出發(fā)4h時與甲地的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

許多家庭以燃氣作為燒水做飯的燃料,節(jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實的問題.某款燃氣灶旋轉(zhuǎn)位置從0度到90度(如圖),燃氣關(guān)閉時,燃氣灶旋轉(zhuǎn)的位置為0度,旋轉(zhuǎn)角度越大,燃氣流量越大,燃氣開到最大時,旋轉(zhuǎn)角度為90度.為測試燃氣灶旋轉(zhuǎn)在不同位置上的燃氣用量,在相同條件下,選擇燃氣灶旋鈕的5個不同位置上分別燒開一壺水(當旋鈕角度太小時,其火力不能夠?qū)⑺疅_,故選擇旋鈕角度x度的范圍是18≤x≤90),記錄相關(guān)數(shù)據(jù)得到下表:

旋鈕角度(度)
20
50
70
80
90
所用燃氣量(升)
 73
 67
 83
 97
115
 
(1)請你從所學習過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃氣量y升與旋鈕角度x度的變化規(guī)律?說明確定是這種函數(shù)而不是其它函數(shù)的理由,并求出它的解析式;
(2)當旋鈕角度為多少時,燒開一壺水所用燃氣量最少?最少是多少?
(3)某家庭使用此款燃氣灶,以前習慣把燃氣開到最大,現(xiàn)采用最節(jié)省燃氣的旋鈕角度,每月平均能節(jié)約燃氣10立方米,求該家庭以前每月的平均燃氣量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

函數(shù)常用的表示方法有三種.
已知A、B兩地相距30千米,小王以40千米/時的速度騎摩托車從A地出發(fā)勻速前往B地參加活動.請選擇兩種方法來表示小王與B地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系.

查看答案和解析>>

同步練習冊答案