【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)AB的坐標(biāo)分別是A3,2)、B1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1

1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)的坐標(biāo)為

2)點(diǎn)A1的坐標(biāo)為 ;

3)在旋轉(zhuǎn)過(guò)程中,求線段AB掃過(guò)的面積?

【答案】1)(-3,-2);(2)(-2,3);(3π

【解析】

1)直接根據(jù)關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)寫出答案;
2)首先畫出圖形,然后根據(jù)平面直角坐標(biāo)系寫出點(diǎn)A1的坐標(biāo);
3)根據(jù)線段AB掃過(guò)的面積,再根據(jù)扇形的面積公式即可解答.

解:(1)∵點(diǎn)A3,2).
∴點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)的坐標(biāo)為(3,2);

故答案為:(3,2);
2)作圖如下:

由圖可知點(diǎn)A1的坐標(biāo)為(2,3);

故答案為:(23);
3)∵A32)、B13),

∴OA=,OB=

由(2)中圖可知,線段AB掃過(guò)的面積為:

=,

即線段AB掃過(guò)的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線軸交于兩點(diǎn),與軸交于點(diǎn)

1)求拋物線的函數(shù)表達(dá)式

2)如圖1,點(diǎn)為第四象限拋物線上一點(diǎn),連接,交于點(diǎn),連接,記的面積為,的面積為,求的最大值;

3)如圖2,連接,,過(guò)點(diǎn)作直線,點(diǎn)分別為直線和拋物線上的點(diǎn).試探究:在第一象限是否存在這樣的點(diǎn),,使.若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一手機(jī)支架,其中AB8cm,底座CD1cm,當(dāng)點(diǎn)A正好落在桌面上時(shí)如圖2所示,∠ABC80°,∠A60°.

1)求點(diǎn)B到桌面AD的距離;

2)求BC的長(zhǎng).(結(jié)果精確到0.1cm;參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.191.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABE中,C,D是邊BE上的兩點(diǎn),有下面四個(gè)關(guān)系式:(1AB=AE,(2BC=DE,(3AC=AD,(4)∠BAC=∠EAD.請(qǐng)用其中兩個(gè)作為已知條件,余下兩個(gè)作為求證的結(jié)論,寫出你的已知和求證,并證明.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax22ax+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,1),將A點(diǎn)向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到點(diǎn)B,直線y=2x+m經(jīng)過(guò)點(diǎn)B,與y軸交于點(diǎn)C

1)求點(diǎn)B,C的坐標(biāo);

2)求二次函數(shù)圖象的對(duì)稱軸;

3)若二次函數(shù)y=ax22ax+c(﹣1x2)的圖象與射線CB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A為⊙O外一點(diǎn),連接AO,交⊙O于點(diǎn)PAO=6.點(diǎn)B為⊙O上一點(diǎn),連接BP,過(guò)點(diǎn)ACAAO,交BP延長(zhǎng)線于點(diǎn)CAC=AB

1)判斷直線AB與⊙O的位置關(guān)系,并說(shuō)明理由.

2)若PC=4,求 PB的長(zhǎng).

3)若在⊙O上存在點(diǎn)E,使△EAC是以AC為底的等腰三角形,則⊙O的半徑r的取值范圍是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖.要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角一般要滿足,現(xiàn)有一架長(zhǎng)的梯子.

(1)使用這架梯子最高可以安全攀上多高的墻(結(jié)果保留小數(shù)點(diǎn)后一位)?

(2)當(dāng)梯子底端距離墻面時(shí),等于多少度(結(jié)果保留小數(shù)點(diǎn)后一位)?此時(shí)人是否能夠安全使用這架梯子?

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接小長(zhǎng)假的購(gòu)物高峰.某服裝專賣店老板小王準(zhǔn)備購(gòu)進(jìn)甲、乙兩種夏季服裝.其中甲種服裝每件的成本價(jià)比乙種服裝的成本價(jià)多20元,甲種服裝每件的售價(jià)為240元比乙種服裝的售價(jià)多80元.小王用4000元購(gòu)進(jìn)甲種服裝的數(shù)量與用3200元購(gòu)進(jìn)乙種服裝的數(shù)量相同.

1)甲種服裝每件的成本是多少元?

2)要使購(gòu)進(jìn)的甲、乙兩種服裝共200件的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))不少于21100元,且不超過(guò)21700元,問(wèn)小王有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)E□ABCD對(duì)角線AC上的一點(diǎn),點(diǎn)F在線段BE的延長(zhǎng)線上,且EF=BE,線段EF與邊CD相交于點(diǎn)G

1)求證:DF//AC;

2)如果AB=BE,DG=CG聯(lián)結(jié)DE、CF,求證:四邊形DECF是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案