如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
(1)證明:在正方形ABCD中,AB=BC,
∠ABP=∠CBP=45°,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SAS),
∴PA=PC,
∵PA=PE,
∴PC=PE;
(2)由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠E,
∴∠DCP=∠E,
∵∠CFP=∠EFD(對頂角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=90°;
(3)在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,
∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠BCP,
∵PA=PE,
∴PC=PE,
∴∠DAP=∠DCP,
∵PA=PC,
∴∠DAP=∠E,
∴∠DCP=∠E
∵∠CFP=∠EFD(對頂角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,
∴△EPC是等邊三角形,
∴PC=CE,
∴AP=CE;
科目:初中數(shù)學(xué) 來源: 題型:
把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)有等式Am=(i,j)表示正奇數(shù)m是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A2015=( )
A. (31,50) B. (32,47) C. (33,46) D. (34,42)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀理解
拋物線y=x2上任意一點到點(0,1)的距離與到直線y=﹣1的距離相等,你可以利用這一性質(zhì)解決問題.
問題解決
如圖,在平面直角坐標(biāo)系中,直線y=kx+1與y軸交于C點,與函數(shù)y=x2的圖象交于A,B兩點,分別過A,B兩點作直線y=﹣1的垂線,交于E,F(xiàn)兩點.
(1)寫出點C的坐標(biāo),并說明∠ECF=90°;
(2)在△PEF中,M為EF中點,P為動點.
①求證:PE2+PF2=2(PM2+EM2);
②已知PE=PF=3,以EF為一條對角線作平行四邊形CEDF,若1<PD<2,試求CP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點P是CD 中點,BP與半圓交于點Q,連結(jié)DQ.給出如下結(jié)論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結(jié)論是_________.(填寫序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com