如圖,將一把直角三角板的直角頂點(diǎn)放置于原點(diǎn)O,兩直角邊與拋物線y=x2交于M、N兩點(diǎn),設(shè)M、N的橫坐標(biāo)分別為m、n(m>0,n<0);請(qǐng)解答下列問(wèn)題:
(1)當(dāng)m=1時(shí),n=______;當(dāng)m=2時(shí),n=______.試猜想m與n滿(mǎn)足的關(guān)系,并證明你猜想的結(jié)論.
(2)連接M、N,若△OMN的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.
(3)當(dāng)三角板繞點(diǎn)O旋轉(zhuǎn)到某一位置時(shí),恰好使得∠MNO=30°,此時(shí)過(guò)M作MA⊥x軸,垂足為A,求出△OMA的面積.
(4)當(dāng)m=2時(shí),拋物線上是否存在一點(diǎn)P使M、N、O、P四點(diǎn)構(gòu)成梯形?若存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

【答案】分析:(1)根據(jù)點(diǎn)M、N的坐標(biāo)的橫坐標(biāo)與縱坐標(biāo)的長(zhǎng)度對(duì)應(yīng)成比例列式計(jì)算即可得解;過(guò)點(diǎn)N作NB⊥x軸,垂足為B,根據(jù)同角的余角相等求出∠BON=∠AMO,然后證明△OMA和△NOB相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式整理即可得到m、n的關(guān)系式,從而得到證明;
(2)根據(jù)△OMN的面積=梯形ABNM的面積-△BON的面積-△AOM的面積,列式整理即可得解;
(3)根據(jù)∠MNO的余切值求出,再根據(jù)△OMA和△NOB相似,利用相似三角形對(duì)應(yīng)邊成比例列式求出m、n的關(guān)系,然后把m•n=-1代入消掉n,再根據(jù)三角形的面積公式列式整理即可得解;
(4)先求出M、N的坐標(biāo),然后求出直線ON、MN、OM的解析式,然后分①M(fèi)P∥ON時(shí),根據(jù)平行直線的解析式的k值相等求出直線MP的解析式,再與拋物線解析式聯(lián)立求解即可得到點(diǎn)P的坐標(biāo);②OP∥MN時(shí),根據(jù)平行直線的解析式的k值相等求出直線MP的解析式,再與拋物線解析式聯(lián)立求解即可得到點(diǎn)P的坐標(biāo);③NP∥OM時(shí),根據(jù)平行直線的解析式的k值相等求出直線MP的解析式,再與拋物線解析式聯(lián)立求解即可得到點(diǎn)P的坐標(biāo).
解答:解:(1)當(dāng)m=1時(shí),點(diǎn)M的坐標(biāo)為(1,1),點(diǎn)N的坐標(biāo)為(n,n2),
所以,=
解得n=-1;
當(dāng)m=2時(shí),點(diǎn)M的坐標(biāo)為(2,4),點(diǎn)N的坐標(biāo)為(n,n2),
所以,=
解得n=;
猜想:m與n滿(mǎn)足的關(guān)系:m•n=-1.
證明:作NB⊥x軸,垂足為B,∵∠MON=90°,
∴∠BON+∠AOM=180°-90°=90°,
∵∠AOM+∠AMO=90°,
∴∠BON=∠AMO,
又∵∠OAM=∠NBO=90°,
∴△OMA∽△NOB,
∵M(jìn)(m,m2) N(n,n2),
=,
=,
整理得:m•n=-1;

(2)S△OMN=S梯形ABNM-S△BON-S△AOM=--,
=
=,
=
=;

(3)∵∠MNO=30°,
∴cot∠MNO=cot30°=,
=,
又∵△OMA∽△NOB(已證),
=,
將m•n=-1代入得m3=,
∴△OMA的面積=m•m2=m3=

(4)當(dāng)m=2時(shí),∵點(diǎn)M在拋物線y=x2上,
∴點(diǎn)M的坐標(biāo)為(2,4),
n=-=-,
∴點(diǎn)N的坐標(biāo)為(-),
所以,直線ON的解析式為y=-x,OM的解析式為y=2x,
設(shè)直線MN的解析式為y=kx+b,
,
解得,
所以,直線MN的解析式為y=x+1,
①M(fèi)P∥ON時(shí),設(shè)直線MP的解析式為y=-x+e,
則-×2+e=4,
解得e=5,
所以,直線MP的解析式為y=-x+5,
聯(lián)立,
解得(為點(diǎn)M),,
所以,點(diǎn)P的坐標(biāo)為(-,);
②OP∥MN時(shí),OP的解析式為y=x,
聯(lián)立,
解得(為點(diǎn)O),
所以,點(diǎn)P的坐標(biāo)為();
③NP∥OM時(shí),設(shè)直線NP解析式為y=2x+f,
則2×(-)+f=,
解得f=,
所以,直線NP的解析式為y=2x+,
聯(lián)立,
解得(為點(diǎn)N),,
所以,點(diǎn)P的坐標(biāo)為(,),
可以證明,以上三種情況底邊都不相等,都是梯形,
綜上所述,點(diǎn)P的坐標(biāo)為(-,)或()或(,)時(shí),M、N、O、P四點(diǎn)構(gòu)成梯形.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要考查了相似三角形的判定與性質(zhì),三角形的面積求解,梯形的兩底邊平行的性質(zhì),待定系數(shù)法求一次函數(shù)解析,聯(lián)立兩函數(shù)解析式求交點(diǎn)坐標(biāo),(4)要分△OMN的三邊分別是梯形的底邊的情況進(jìn)行討論求解,比較復(fù)雜,計(jì)算時(shí)要認(rèn)真仔細(xì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鎮(zhèn)江模擬)如圖,將一把直角三角板的直角頂點(diǎn)放置于原點(diǎn)O,兩直角邊與拋物線y=x2交于M、N兩點(diǎn),設(shè)M、N的橫坐標(biāo)分別為m、n(m>0,n<0);請(qǐng)解答下列問(wèn)題:
(1)當(dāng)m=1時(shí),n=
-1
-1
;當(dāng)m=2時(shí),n=
-
1
2
-
1
2
.試猜想m與n滿(mǎn)足的關(guān)系,并證明你猜想的結(jié)論.
(2)連接M、N,若△OMN的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.
(3)當(dāng)三角板繞點(diǎn)O旋轉(zhuǎn)到某一位置時(shí),恰好使得∠MNO=30°,此時(shí)過(guò)M作MA⊥x軸,垂足為A,求出△OMA的面積.
(4)當(dāng)m=2時(shí),拋物線上是否存在一點(diǎn)P使M、N、O、P四點(diǎn)構(gòu)成梯形?若存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一把直角三角板的直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點(diǎn),請(qǐng)解答以下問(wèn)題:

(1)若測(cè)得OA=OB=2
2
(如圖1),求a的值;
(2)對(duì)同一條拋物線,將三角板繞點(diǎn)O旋轉(zhuǎn)到如圖2所示位置時(shí),過(guò)B作BF⊥x軸于點(diǎn)F,測(cè)得OF=1,寫(xiě)出此時(shí)點(diǎn)B的坐標(biāo),并求點(diǎn)A的橫坐標(biāo);
(3)對(duì)該拋物線,將三角板繞點(diǎn)O旋轉(zhuǎn)任意角度時(shí),交點(diǎn)A、B的連線段總經(jīng)過(guò)一個(gè)固定的點(diǎn),試求出該點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,將一把直角三角板的直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點(diǎn),請(qǐng)解答以下問(wèn)題:

(1)若測(cè)得OA=OB=2數(shù)學(xué)公式(如圖1),求a的值;
(2)對(duì)同一條拋物線,將三角板繞點(diǎn)O旋轉(zhuǎn)到如圖2所示位置時(shí),過(guò)B作BF⊥x軸于點(diǎn)F,測(cè)得OF=1,寫(xiě)出此時(shí)點(diǎn)B的坐標(biāo),并求點(diǎn)A的橫坐標(biāo);
(3)對(duì)該拋物線,將三角板繞點(diǎn)O旋轉(zhuǎn)任意角度時(shí),交點(diǎn)A、B的連線段總經(jīng)過(guò)一個(gè)固定的點(diǎn),試求出該點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一把直角三角板的直角頂點(diǎn)放置于原點(diǎn)O,兩直角邊與拋物線交于M、N兩點(diǎn),設(shè)M、N的橫坐標(biāo)分別為m、n(m﹥0,n﹤0);請(qǐng)解答下列問(wèn)題:
【小題1】當(dāng)m=1時(shí),n=__ ▲ ; 當(dāng)m=2時(shí),n=__ ▲ 試猜想m與n滿(mǎn)足的關(guān)系,并證明你猜想的結(jié)論。
【小題2】連接M、N,若△OMN的面積為S,求S關(guān)于m的函數(shù)關(guān)系式。
【小題3】當(dāng)三角板繞點(diǎn)O旋轉(zhuǎn)到某一位置時(shí),恰好使得∠MNO=30°,此時(shí)過(guò)M作MA⊥x軸,垂足為A,求出△OMA的面積
【小題4】當(dāng)m=2時(shí),拋物線上是否存在一點(diǎn)P使M、N、O、P四點(diǎn)構(gòu)成梯形,若存在,直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江西省贛州市定南縣三中片區(qū)九年級(jí)數(shù)學(xué)全能競(jìng)賽試卷(解析版) 題型:解答題

如圖,將一把直角三角板的直角頂點(diǎn)置于平面直角坐標(biāo)系的原點(diǎn)O,兩直角邊與拋物線y=ax2(a<0)交于A、B兩點(diǎn),請(qǐng)解答以下問(wèn)題:

(1)若測(cè)得OA=OB=2(如圖1),求a的值;
(2)對(duì)同一條拋物線,將三角板繞點(diǎn)O旋轉(zhuǎn)到如圖2所示位置時(shí),過(guò)B作BF⊥x軸于點(diǎn)F,測(cè)得OF=1,寫(xiě)出此時(shí)點(diǎn)B的坐標(biāo),并求點(diǎn)A的橫坐標(biāo);
(3)對(duì)該拋物線,將三角板繞點(diǎn)O旋轉(zhuǎn)任意角度時(shí),交點(diǎn)A、B的連線段總經(jīng)過(guò)一個(gè)固定的點(diǎn),試求出該點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案