已知反比例函數(shù)y=
k
2x
的圖象過點(-2,-
1
2
)

(1)求此反比例函數(shù)的解析式;
(2)如圖,點A(m,1)是反比例函數(shù)圖象上的點,求m的值;
(3)利用(2)的結果,請問:在x軸上是否存在點P,使以A、O、P三點為頂點的三角形是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
(1)∵反比例函數(shù)y=
k
2x
的圖象過點(-2,-
1
2
)

∴-
1
2
=
k
-4
,
∴k=2,
∴y=
2
2x
=
1
x
,
∴反比例函數(shù)的解析式為:y=
1
x
;

(2)點A(m,1)是反比例函數(shù)圖象上的點,
∴m=1;

(3)假設存在P(a,0),使以A、O、P三點為頂點的三角形是直角三角形,
則當∠PAO為直角時,AP=AO,∴P點坐標為(2,0);
當∠APO為直角時,則P點坐標為(1,0).
故存在P(2,0)或者P(1,0),使以A、O、P三點為頂點的三角形是直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,正比例函數(shù)y=kx與反比例函數(shù)y=
m
x
的圖象交于點A(-3,2).
(1)試確定上述正比例函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,在第二象限內(nèi),當x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?
(3)P(m,n)是反比例函數(shù)圖象上的一動點,其中-3<m<0,過點P作直線PBx軸,交y軸于點B,過點A作直線ADy軸,交x軸于點D,交直線PB于點C.當四邊形OACP的面積為6時,請判斷線段BP與CP的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線AC與雙曲線y=
k
x
在第四象限交于點A(x0,y0),交x軸于點C,且AO=
13
點A的橫坐標為2,過點A作AB⊥x軸于點B,且S△ABC:S△ABO=4:1.
(1)求k的值及直線AC的解析式;
(2)在第四象限內(nèi),雙曲線y=
k
x
上有一動點D(m,n),設△BCD的面積為S,求S與m的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,反比例函數(shù)y=
k
x
在第一象限內(nèi)的圖象上有點A、B,已知點A(3m,m)、點B(n,n+1)(其中m>0,n>0),OA=2
10

(1)求A、B點的坐標及反比例函數(shù)解析式;
(2)如果M為x軸上一點,N為y軸上一點,以A、B、M、N為頂點的四邊形是平行四邊形,請直接寫出符合條件的M、N點的坐標,并畫出相應的平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點P在反比例函數(shù)y=
1
x
(x>0)的圖象上,且橫坐標為2.若將點P先向右平移兩個單位,再向上平移一個單位后所得圖象為點P′.則經(jīng)過點P'的反比例函數(shù)圖象的解析式是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,已知矩形AOBC,AO=2,BO=3,函數(shù)y=
k
x
的圖象經(jīng)過點C.
(1)直接寫出點C的坐標;
(2)將矩形AOBC分別沿直線AC,BC翻折,所得到的矩形分別與函數(shù)y=
k
x
(x>0)交于點E,F(xiàn)求線段EF.
(3)若點P、Q分別在函數(shù)y=
k
x
圖象的兩個分支上,請直接寫出線段P、Q兩點的最短距離(不需證明);并利用圖象,求當
k
x
≤x
時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=x與反比例函數(shù)y=
k
x
(x>0)的圖象交于點A,AB⊥y軸,垂足為B,點C在射線BA上(端點除外),點E在x軸上,且∠OCE=90°,CH⊥x軸,垂足為H,并與反比例函數(shù)y=
k
x
圖象交于點G.
(1)若點B的坐標為(0,4),求k的值;
(2)在(1)的條件下,求證:HG=HE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,正方形ABCD的邊BC在x軸上,點E是對角線AC,BD的交點,函數(shù)y=
3
x
的圖象經(jīng)過A,E兩點,則△OAE的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,雙曲線y=
k
x
過點A(-1,3).
(1)求k的值;
(2)若過點A的直線y=-2x+b與x軸交于點B,求△AOB的面積.

查看答案和解析>>

同步練習冊答案