【題目】已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD、BD,BD交AC于點(diǎn)F.
(1)求證:BD平分∠ABC;
(2)延長(zhǎng)AC到點(diǎn)P,使PF=PB,求證:PB是⊙O的切線(xiàn);
(3)如果AB=10,cos∠ABC=,求AD.
【答案】
(1)
【解答】證明:∵OD∥BC,
∴∠D=∠CBD,
∵OB=OD,
∴∠D=∠OBD,
∴∠CBD=∠OBD,
∴BD平分∠ABC;
(2)
證明:∵⊙O是以AB為直徑的△ABC的外接圓,
∴∠ACB=90°,
∴∠CFB+∠CBF=90°.
∵PF=PB,
∴∠PBF=∠CFB,
由1知∠OBD=∠CBF,
∴∠PBF+∠OBD=90°,
∴∠OBP=90°,
∴PB是⊙O的切線(xiàn);
(3)
解:連結(jié)AD.
∵在Rt△ABC中,∠ACB=90°,AB=10,
∴cos∠ABC=,
∴BC=6,AC==8.
∵OD∥BC,
∴△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,
∴,,
∴AE=4,OE=3,
∴DE=OD﹣OE=5﹣3=2,
∴AD===.
【解析】(1)先由OD∥BC,根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等得出∠D=∠CBD,由OB=OD,根據(jù)等邊對(duì)等角得出∠D=∠OBD,等量代換得到∠CBD=∠OBD,即BD平分∠ABC;
(2)先由圓周角定理得出∠ACB=90°,根據(jù)直角三角形兩銳角互余得到∠CFB+∠CBF=90°.再由PF=PB,根據(jù)等邊對(duì)等角得出∠PBF=∠CFB,而由(1)知∠OBD=∠CBF,等量代換得到∠PBF+∠OBD=90°,即∠OBP=90°,根據(jù)切線(xiàn)的判定定理得出PB是⊙O的切線(xiàn);
(3)連結(jié)AD.在Rt△ABC中,由cos∠ABC=,求出BC=6,根據(jù)勾股定理得到AC==8.再由OD∥BC,得出△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,根據(jù)相似三角形對(duì)應(yīng)邊成比例求出AE=4,OE=3,那么DE=OD﹣OE=2,然后在Rt△ADE中根據(jù)勾股定理求出AD==2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市中小學(xué)全面開(kāi)展“陽(yáng)光體育”活動(dòng),某校在大課間中開(kāi)設(shè)了A:體操,B:跑操,C:舞蹈,D:健美操四項(xiàng)活動(dòng),為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有人.
(2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整.
(3)統(tǒng)計(jì)圖1中B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是度.
(4)已知該校共有學(xué)生3600人,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡健美操的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次課外實(shí)踐活動(dòng)中,老師要求同學(xué)們利用測(cè)角儀和皮尺估測(cè)教學(xué)樓AB的高度.同學(xué)們?cè)诮虒W(xué)樓的正前方D處用高為1米的測(cè)角儀測(cè)的教學(xué)樓頂端A的仰角為30°,然后他們向教學(xué)樓方向前進(jìn)30米到達(dá)E處,又測(cè)得A的仰角為60°,則教學(xué)樓高度AB是多少米?(精確到0.1米,參考數(shù)據(jù) =1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點(diǎn),且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:
①BE=GE; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正確的結(jié)論有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次訓(xùn)練中,甲、乙兩名射擊運(yùn)動(dòng)員各射擊10發(fā)子彈的成績(jī)統(tǒng)計(jì)圖如圖所示,對(duì)于本次訓(xùn)練,有如下結(jié)論:①S甲2>S乙2;②S甲2<S乙2;③甲的射擊成績(jī)比乙穩(wěn)定;④乙的射擊成績(jī)比甲穩(wěn)定,由統(tǒng)計(jì)圖可知正確的結(jié)論是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車(chē)輛,限速40千米/時(shí),已知交警測(cè)速點(diǎn)M到該公路A點(diǎn)的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車(chē)由A往B方向勻速行駛,測(cè)得此車(chē)從A點(diǎn)行駛到B點(diǎn)所用的時(shí)間為3秒.
(1)求測(cè)速點(diǎn)M到該公路的距離;
(2)通過(guò)計(jì)算判斷此車(chē)是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱(chēng)為“整圓”.如圖,直線(xiàn)l:與x軸、y軸分別交于A、B,∠OAB=30°,點(diǎn)P在x軸上,⊙P與l相切,當(dāng)P在線(xiàn)段OA上運(yùn)動(dòng)時(shí),使得⊙P成為整圓的點(diǎn)P個(gè)數(shù)是( 。
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四邊形CDEF=S△ABF , 其中正確的結(jié)論有( 。
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com