(2005 福州)如圖所示,某學(xué)習(xí)小組選一名身高為1.6m的同學(xué)直立于旗桿影子的頂端處,其他人分為兩部分,一部分同學(xué)測量該同學(xué)的影長為1.2m,另一部分同學(xué)測量同一時刻旗桿影長為9m,那么旗桿的高度是________m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:013
(2005 福州)如圖所示,AB為⊙O的直徑,點(diǎn)C在⊙O上,∠B=50°,則∠A等于
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:013
(2005福州課改)如圖射線OC的端點(diǎn)O在線AB上,∠AOC的度數(shù)比∠BOC的2倍多10°.設(shè)∠AOC和∠BOC的度數(shù)分別為x、y,則下列正確的方程組為
[ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:044
(2005 福州)已知:如圖所示,AB是⊙O的直徑,P是AB上的一點(diǎn)(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點(diǎn),過C點(diǎn)作⊙O的切線交直線QP于點(diǎn)D,則△CDQ是等腰三角形,對上述命題證明如下:
證明 連接OC.∵OA=OC=OC,∴∠A==∠1.
∵CD切⊙O于C點(diǎn),∴∠OCD=90=90°,
∴∠1+∠2=90°,∴∠A+∠2=90°,
在Rt△QPA中,∠QPA=90=90°,
∴∠A+∠Q=90=90°,∴∠2=∠Q.∴DQ=DC=DC.
即△CDQ是等腰三角形.
問題 對上述命題,當(dāng)點(diǎn)P在BA的延長線上時,其他條件不變,如圖所示,結(jié)論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com