【題目】數(shù)學(xué)活動(dòng)課上,小聰同學(xué)擺弄著自己剛購(gòu)買的一套三角板,將兩塊直角三角板的直角頂點(diǎn)C疊放在一起,然后轉(zhuǎn)動(dòng)三角板,在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)解決以下問(wèn)題:

(1)如圖(1):當(dāng)∠DCE=30°時(shí),∠ACB+∠DCE=   ,若∠DCE為任意銳角時(shí),你還能求出∠ACB∠DCE的數(shù)量關(guān)系嗎?若能,請(qǐng)求出;若不能,請(qǐng)說(shuō)明理由.

(2)當(dāng)轉(zhuǎn)動(dòng)到圖(2)情況時(shí),∠ACB∠DCE有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

【答案】(1)∠ACB+∠DCE=180°(2)∠ACB+∠DCE=180°

【解析】

1)當(dāng)∠DCE=30°時(shí),利用互余計(jì)算出∠BCD,然后可得到∠ACB+∠DCE的度數(shù);若∠DCE為任意銳角時(shí)利用∠ACE+∠DCE=90°,BCD+∠DCE=90°,然后計(jì)算出∠ACB+∠DCE=180°;

2)利用周角定義得到∠ACD+∠ECB+∠ACB+∠DCE=360°,所以∠ECD+∠ACB=360°﹣(ACD+∠ECB)=180°.

1ACB+∠DCE=180°;若∠DCE為任意銳角時(shí),ACB+∠DCE=180°.理由如下

∵∠ACE+∠DCE=90°,BCD+∠DCE=90°,∴∠ACB+∠DCE=ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;

2ACB+∠DCE=180°.理由如下

∵∠ACD=90°=ECB,ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(ACD+∠ECB)=360°﹣180°=180°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樹(shù)AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹(shù)的頂點(diǎn)AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹(shù)AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列推理過(guò)程,將空白部分補(bǔ)充完整.

(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對(duì)∠DBC=∠D1B1C1進(jìn)行說(shuō)理.

理由:因?yàn)锽D,B1D1分別是∠ABC,∠A1B1C1的角平分線

所以∠DBC=   ,∠D1B1C1=   (角平分線的定義)

又因?yàn)?/span>∠ABC=∠A1B1C1

所以∠ABC=∠A1B1C1

所以∠DBC=∠D1B1C1   

(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求CDG的度數(shù).

因?yàn)镋F∥AD,

所以∠2=      

又因?yàn)?/span>∠1=∠2 (已知)

所以∠1=   (等量代換)

所以AB∥GD(   

所以∠B=      

因?yàn)?/span>B=40°(已知)

所以∠CDG=   (等量代換)

(3)下面是積的乘方的法則“的推導(dǎo)過(guò)程,在括號(hào)里寫出每一步的依據(jù).

因?yàn)椋?/span>ab)n=   

=   

=anbn   

所以(ab)n=anbn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)EF之間距離是10cm,AB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為10厘米、6厘米,且ACBD互相垂直,順次連接四邊形ABCD四邊的中點(diǎn)E、F、G、H得四邊形EFGH,則四邊形EFGH的面積為_____平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成下列問(wèn)題:

(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.

(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)EBA的中點(diǎn)(EA、C兩點(diǎn)的距離相等),井在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù),求出CE的長(zhǎng).

(3)O為原點(diǎn),取OC的中點(diǎn)M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點(diǎn)分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點(diǎn)將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個(gè)點(diǎn)?求出這些點(diǎn)所表示的數(shù)的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于有理數(shù)a、b,定義運(yùn)算:ab=a×b-a-b+1.

(1)計(jì)算5(-2)與(-2)5的值,并猜想abba的大小關(guān)系;

(2)求(-3) [4(-2)]的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案