如圖,已知E為平行四邊形ABCD中DC邊的延長線上的一點(diǎn),且CE=DC,連接AE分別交BC、BD于點(diǎn)F、G.
(1)求證:△AFB≌△EFC;(2)若BD=12cm,求DG的長.

【答案】分析:(1)根據(jù)平行四邊形性質(zhì)推出AB=CD=CE,AB∥CD,推出∠ABF=FCE,∠BAF=∠FEC,根據(jù)全等三角形的判定證出即可;
(2)求出==,把BD的長代入求出即可.
解答:(1)證明:在平行四邊形ABCD中,
∵AB∥CD,
∴∠BAF=∠CEF,∠ABF=∠ECF,
∵AB=CD,CE=CD,
∴AB=CE,
在△AFB和△EFC中

∴△AFB≌△EFC.

(2)解:∵ED=2CD=2AB,
,
∵AB∥CD,

又∵BD=12,
∴DG=BD=8cm,
答:DG的長是8cm.
點(diǎn)評:本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),全等三角形的判定,平行線分線段成比例定理等知識點(diǎn),主要考查學(xué)生能否根據(jù)性質(zhì)進(jìn)行推理,題目比較典型,難度也適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

從邊長為a的大正方形紙板中間挖去一個邊長為b的小正方形后,將其截成四個相同的等腰梯形﹙如圖①﹚,可以拼成一個平行四邊形﹙如圖②﹚.
現(xiàn)有一平行四邊形紙片ABCD﹙如圖③﹚,已知∠A=45°,AB=6,AD=4.若將該紙片按圖②方式截成四個相同的等腰梯形,然后按圖①方式拼圖,則得到的大正方形的面積為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-1,2)、B(-3,0)、C(0,0)、
(1)請直接寫出點(diǎn)A關(guān)于x軸對稱的點(diǎn)A′的坐標(biāo);
(2)以C為位似中心,在x軸下方作△ABC的位似圖形△A1B1C1,使放大前后位似比為1:2,請畫出圖形,并求出△A1B1C1的面積;
(3)請直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,已知平行四邊形ABCD中,E是AB邊的中點(diǎn),DE交AC于點(diǎn)F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結(jié)論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結(jié)論是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A(1,0),B(6,0)和C(0,4 )三個點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)E(m,n)是拋物線上一個動點(diǎn),且位于第四象限,四邊形OEBF是以O(shè)B為對角線的平行四邊形,求四邊形OEBF的面積S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當(dāng)四邊形OEBF的面積為24時,請判斷四邊形OEBF是否為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點(diǎn)為D.
(1)求證:點(diǎn)D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動時,四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案