2
3
、3
2
、3、4四個數(shù)用“<”號連接為
 
分析:先估算出
3
2
的值,再根據(jù)實數(shù)比較大小的法則進行比較.
解答:解:∵
3
≈1.73,
2
≈1.41,
∴2
3
≈1.73×2=3.46,3
2
≈3×1.41=4.23,
∵3<3.46<4<4.23,
∴3<2
3
<4<3
2

故答案為:3<2
3
<4<3
2
點評:本題考查的是實數(shù)的大小比較,先估算出
2
、
3
的值是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、觀察下列各式,你會發(fā)現(xiàn)什么規(guī)律1×3=12+2×1,2×4=22+2×23×5=32+2×3,4×6=42+2×4,…請你將猜到的規(guī)律用正整數(shù)n表示出來:
n(n+2)=n2+2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•河?xùn)|區(qū)二模)如圖,菱形OABC中,∠A=120°,OA=1,將菱形OABC繞點O按順時針方向旋轉(zhuǎn)90°,則圖中陰影部分的面積是
2
3
π-
3
2
2
3
π-
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

小明在課外閱讀中對有關(guān)“自定義型題”有了一定的了解,他也嘗試著自定義了“顛倒數(shù)”的概念:從左到右寫下一個自然數(shù),再把它按從右到左的順序?qū)懸槐椋绻麅蓴?shù)位數(shù)相同,這樣就得到了這個數(shù)的“顛倒數(shù)”,如348的顛倒數(shù)是843.
請你探究,解決下列問題:
(1)請直接寫出2012的“顛倒數(shù)”為
2102
2102

(2)若數(shù)a存在“顛倒數(shù)”,則它滿足的條件是:
數(shù)a的末位數(shù)字不等于零
數(shù)a的末位數(shù)字不等于零

(3)能否找到一個數(shù)字填入空格,使下列由“顛倒數(shù)”構(gòu)成的等式成立?12×23□=□32×21.請你用下列步驟探究:
設(shè)這個數(shù)字為x,將“23□”和“□32”轉(zhuǎn)化為用含x的代數(shù)式表示分別為
230+x
230+x
100x+32
100x+32
;
列出滿足條件的關(guān)于x的方程:
12(230+x)=21(100x+32)
12(230+x)=21(100x+32)
;
解這個方程的:x=
1
1

經(jīng)檢驗,所求的x值符合題意嗎?
符合
符合
(填“符合”或“不符合”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明在課外閱讀中對有關(guān)“自定義型題”有了一定的了解,他也嘗試著自定義了“顛倒數(shù)”的概念:從左到右寫下一個自然數(shù),再把它按從右到左的順序?qū)懸槐椋绻麅蓴?shù)位數(shù)相同,這樣就得到了這個數(shù)的“顛倒數(shù)”,如348的顛倒數(shù)是843.
請你探究,解決下列問題:
(1)請直接寫出2012的“顛倒數(shù)”為______.
(2)若數(shù)a存在“顛倒數(shù)”,則它滿足的條件是:______.
(3)能否找到一個數(shù)字填入空格,使下列由“顛倒數(shù)”構(gòu)成的等式成立?12×23□=□32×21.請你用下列步驟探究:
設(shè)這個數(shù)字為x,將“23□”和“□32”轉(zhuǎn)化為用含x的代數(shù)式表示分別為______和______;
列出滿足條件的關(guān)于x的方程:______;
解這個方程的:x=______;
經(jīng)檢驗,所求的x值符合題意嗎?______(填“符合”或“不符合”).

查看答案和解析>>

同步練習(xí)冊答案