【題目】如圖,已知是三角形紙片的高,將紙片沿直線折疊,使點(diǎn)與點(diǎn)重合,給出下列判斷:
①是的中位線;
②的周長(zhǎng)等于周長(zhǎng)的一半:
③若四邊形是菱形,則;
④若是直角,則四邊形是矩形.
其中正確的是( )
A.①②③B.①②④C.②④D.①③④
【答案】A
【解析】
根據(jù)折疊可得EF是AD的垂直平分線,再加上條件AD是三角形紙片ABC的高可以證明EF∥BC,進(jìn)而可得△AEF∽△ABC,從而得,進(jìn)而得到EF是△ABC的中位線;再根據(jù)三角形的中位線定理可判斷出△AEF的周長(zhǎng)是△ABC的一半,進(jìn)而得到△DEF的周長(zhǎng)等于△ABC周長(zhǎng)的一半;根據(jù)三角形中位線定理可得AE=AB,AF=AC,若四邊形AEDF是菱形則AE=AF,即可得到AB=AC.
解:∵AD是△ABC的高,
∴AD⊥BC,
∴∠ADC=90°,
根據(jù)折疊可得:EF是AD的垂直平分線,
∴AO=DO=AD,AD⊥EF,
∴∠AOF=90°,
∴∠AOF=∠ADC=90°,
∴EF∥BC,
∴△AEF∽△ABC,
,
∴EF是△ABC的中位線,
故①正確;
∵EF是△ABC的中位線,
∴△AEF的周長(zhǎng)是△ABC的一半,
根據(jù)折疊可得△AEF≌△DEF,
∴△DEF的周長(zhǎng)等于△ABC周長(zhǎng)的一半,
故②正確;
∵EF是△ABC的中位線,
∴AE=AB,AF=AC,
若四邊形AEDF是菱形,
則AE=AF,
∴AB=AC,
故③正確;
根據(jù)折疊只能證明∠BAC=∠EDF=90°,
不能確定∠AED和∠AFD的度數(shù),故④錯(cuò)誤;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)E(t,0)過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P、Q.
(1)求拋物線的解析式;
(2)當(dāng)0<t≤8時(shí),求△APC面積的最大值;
(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的邊平行于坐標(biāo)軸,對(duì)角線BD經(jīng)過坐標(biāo)原點(diǎn),點(diǎn)C在反比例函數(shù)y=的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣2),則k=( 。
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假降至,丹尼斯大賣場(chǎng)為回饋新老顧客,進(jìn)行有獎(jiǎng)促銷活動(dòng)活動(dòng). 活動(dòng)規(guī)定:購買500元的商品就可以獲得一次轉(zhuǎn)轉(zhuǎn)盤的機(jī)會(huì)(轉(zhuǎn)盤分為5個(gè)區(qū)域,分別是特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、不獲獎(jiǎng)),轉(zhuǎn)盤指針停在哪個(gè)獲獎(jiǎng)區(qū)域就可以得到該區(qū)域相應(yīng)等級(jí)獎(jiǎng)品一件(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?/span>. 大賣場(chǎng)工作人員在制作轉(zhuǎn)盤時(shí),將各扇形區(qū)域圓心角(不完全)分配如下表:
獎(jiǎng)次 | 特等獎(jiǎng) | 一等獎(jiǎng) | 二等獎(jiǎng) | 三等獎(jiǎng) | 不獲獎(jiǎng) |
圓心角 | _________ |
促銷公告:凡購買我大賣場(chǎng)商品500元均有可能獲得下列獎(jiǎng)品:
特等獎(jiǎng):山地越野自行車一輛 一等獎(jiǎng):雙肩背包一個(gè)
二等獎(jiǎng):洗衣液一桶 三等獎(jiǎng):抽紙一盒
根據(jù)以上信息,解答下列問題:
(1)求不獲獎(jiǎng)的扇形區(qū)域圓心角度數(shù)是多少?
(2)求獲得雙肩背包的概率是多少?
(3)甲顧客購物520元,求他獲獎(jiǎng)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD的位置如圖所示,解答下列問題:
(1)將四邊形ABCD先向左平移4格,再向下平移6格,得到四邊形A1B1C1D1,畫出平移后的四邊形A1B1C1D1;
(2)將四邊形A1B1C1D1繞點(diǎn)A1逆時(shí)針旋轉(zhuǎn)90°得到四邊形A1B2C2D2,畫出旋轉(zhuǎn)后的四邊形A1B2C2D2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠A=40°.點(diǎn)P是射線AB上一動(dòng)點(diǎn)(與點(diǎn)A不重合),CE、CF分別平分∠ACP和∠DCP交射線AB于點(diǎn)E、F.
(1)求∠ECF的度數(shù);
(2)隨著點(diǎn)P的運(yùn)動(dòng),∠APC與∠AFC之間的數(shù)量關(guān)系是否改變?若不改變,請(qǐng)求出此數(shù)量關(guān)系;若改變,請(qǐng)說明理由;
(3)當(dāng)∠AEC=∠ACF時(shí),求∠APC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象過點(diǎn),.
(1)求此函數(shù)的解析式.
(2)求出次函數(shù)圖象與軸,軸的交點(diǎn),的坐標(biāo).
(3)若直線與相交于點(diǎn),,與軸圍成的的面積為6,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA,OC分別與坐標(biāo)軸重合,并且點(diǎn)B的坐標(biāo)為.將該矩形沿OB折疊,使得點(diǎn)A落在點(diǎn)E處,OE與BC的交點(diǎn)為D.
(1)求證:為等腰三角形;
(2)求點(diǎn)E的坐標(biāo);
(3)坐標(biāo)平面內(nèi)是否存在一點(diǎn)F,使得以點(diǎn)B,E,F,O為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com